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Examples of segmentation refinement outcomes
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Cell segmentation is critical for data quality in spatial

transcriptomics. The pipeline presented here harnesses information

from both morphology images and mRNA locations to generate an

automated and robust cell segmentation algorithm across different

tissue types. The technique is computationally tractable with > 1

million cells, making it viable for even the biggest spatial

transcriptomics experiments.

Spatial transcriptomics technologies, which produce single-cell gene
expression data paired with cell locations, have opened a new frontier in
biology. Accurate cell segmentation that assigns transcripts to cell
locations is critical to data quality, but very challenging for tissue sections
where cells are tightly packaged with shared, 3D boundaries and uneven
morphology staining. To address this gap, we have developed a
multimodal cell segmentation pipeline that automatically does image
preprocessing, machine-learning-augmented cell segmentation and
transcript-based segmentation refinement. We demonstrate our pipeline
on spatial transcriptomics datasets from various FFPE tissue sections.

SMI is for research use only and not for use in diagnostic procedure.

Abstract

Part I + II: Image-based cell segmentation

Firstly, our pipeline takes tissue images stained with both nuclear and membrane
markers (DAPI, CD298/PanCK/CD45) to perform rescaling, normalization and
boundary enhancement. The preprocessed images are fed into pre-trained Cellpose
neural network models for both nuclear segmentation using nuclear channel only
and cytoplasm segmentation using combined nuclear and membrane channels.
Outputs of the two segmentation methods are combined by analyzing the
intersection-over-union scores to: (a) mitigate issue of non-uniform staining in either
channel; and (b) enable subcellular compartment analysis of the spatial
transcriptomics data.

Part III: Transcriptional profile-based segmentation refinement 
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Overview of multimodal cell segmentation pipeline

Secondly, our pipeline exploits the spatial profile of transcripts on the same tissue section for rapid

segmentation refinement. The image-based cell segmentation enables single-cell typing/clustering

of transcript profiles. Individual transcripts are then scored for goodness-of-fit within their

respective cells, based on the probability of each gene belonging to each cell type and the spatial

dependency of transcript score. As confirmed by the membrane-stained images, cells with

boundary errors at the junction of different cell types, exhibit strong spatial dependency in their

transcript score profile and thus can be easily identified. Our pipeline further identifies the

spatially connected groups of transcripts with low goodness-of-fit within incorrectly segmented

cells. A set of heuristic rules on neighborhood cell typing and transcript number are then applied

to the identified transcript groups to decide on the re-segmentation actions, like merging, splitting

and trimming. The re-segmented results show no significant spatial dependency on transcript

score of individual cells, suggesting the successful correction of poorly segmented cells.
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Image pre-processing improves the robustness of segmentation pipeline  

Morphology variance:
• Mixture of various size and shapes for cells in 

tissues
Spatial profile of transcripts
• Density? ➔might not work well for low plex
• Transcript content? ➔ very slow

The need for universal pipeline despite the complexity and variability in tissue images

Optical variance: 
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Sample variance: 
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Leverage publicly available pre-trained ML based cell segmentation module

Cellpose, a generalist approach of neuron network-based cell segmentation[2,3]
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❖ Cellpose constructs an intermediate representation that forms smooth topological basin and thus 
transforms noisy intensity distribution into a smooth one.

• Ground-truth of manual annotation is transformed to a vector flow representation via simulated 
heat diffusion. 

• Train a neural network to predict spatial gradients (horizontal + vertical = vector fields)
• Create binary mask for ROI via gradient tracking which route cell pixel to center.

❖ Cellpose pre-trained models are well trained on diverse datasets.
• Nuclei dataset: fluorescence nuclei, H&E stain
• Cytoplasm dataset: Cytoplasm stain, membrane stain, non-fluorescence cells, non-cell 

microscopy images, non-microscopy images.

Cell segmentation with pre-trained cellpose model (3rd column for the predicted vector field of spatial
gradients, 4th column for the predicted cell boundaries in white overlay on top of input images) performs
better than alternative ML-based cell segmentation pre-trained model, Mesmer[4] (2nd column for the
predicted cell boundaries in red overlaid on top of input images) on cell images at single z-plane (1st

column). Cell or tissue samples were stained with DAPI (blue) and anti-CD298 (green) to visualize the
nuclei and plasma membrane. (a) Fresh fixed culture U2OS cells where cells have shared boundaries and
pointed shapes; (b) FFPE kidney cancer section where cells have big variance in size, density and
morphology within single field of view; (c) FFPE melanoma tissue section where cells were packed in 3D
with many cells out of focus or have weak or blurry signal (arrows). In general, cellpose pre-trained model
gives more accurate cell boundaries across various tissues, but tends to miss objects that are blurry, out-of-
plane or of weak signal-to-noise ratio (SNR). Image preprocessing module that could bring objects in z-
stack into focus plane and enhance SNR help reduce the false negative detection rate of cellpose model.
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Combining outputs of multiple models into final cell segmentation results
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Internal or external cell typing 
reference profiles

Score each transcript based on 
goodness-of-fit within assigned cells 

(cell type & spatial profile)

Spatial pattern of transcript score (tLLR, log-likelihood ratio) indicates the presence of area from

different cell types in same segment entity.

Identify segmentation boundary errors based on transcript profiles

tLLR score, transcript log likelihood ratio: the difference between a transcript’s log-likelihood under cell type 
of query and the cell type with highest log-likelihood across all cell types. 

t𝐿𝐿(𝑗 | 𝑘) = 𝑙𝑜𝑔𝑙𝑖𝑘 (𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 = 𝑗 | 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 = 𝑘) = log(𝜇𝑘,𝑗)

tLLR(𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 = 𝑗 | 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 = 𝑘) = t𝐿𝐿(𝑗 | 𝑘) - max
𝑎𝑙𝑙 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 ℎ

t𝐿𝐿(𝑗 | ℎ)

Cells with boundary errors at the junction of different cell types would have spatial dependency

on the cell type-specific score for transcripts of the query cell.
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• mod_null: lm(score ~ 1)
• mod_alternative: lm(score ~ x + y + z+ x^2 + y^2 + 

z^2 + xy + xz + yz)
• lmtest::lrtest(mod_alternative, mod_null)

• lrtest score = - log10P(Pr > ChiSq), higher means 
stronger spatial dependency of the transcript score. 
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Segmentation refinement on low-score transcript groups 

Splitting transcript groups based on cell-type-specific transcript score & spatial clustering
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Transcripts w/ lower 
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@-2  have <20% chance 
to be under correct cell 
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mod_svm <- e1071::svm(x = coord_matrix, 
y = factor(above_cutoff), kernel = ‘radial’, 
scale = FALSE, gamma = 0.4)

Evaluating neighborhood of each group of low-score transcripts to decide on segmentation

refinement actions based on heuristic rules
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Define the cutoffs for transcript # & tLLR score based on the corresponding baseline distribution under each cell type in 
current dataset.  
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Examples of paired morphology images (a) and the corresponding spatial profile of transcript score (b) for FFPE melanoma tissue section
stained for DAPI, anti-CD298 antibodies. Unsupervised cell typing/clustering (white fonts in a) was performed given the original cell
segmentation via conventional thresholding method (blue in a and green in b).
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Segmentation refinement on example FFPE melanoma data (a-j):

• c_2_1_3113_g1 (cluster f) merged into c_2_1_3042 (cluster c).
• c_2_1_3043 (cluster e) was trimmed off “g1” group, resulting in change in cell type (cluster f) after re-segmentation. 
• c_2_1_2936_g1, c_2_1_2952_g2, c_2_1_3042_g1, c_2_1_3043_g1, merged into a new cell named c_2_1_2936_g1

(plasmablast), which is consistent with the positive CD45 staining and enriched of the corresponding marker genes 
(IGHG2, JCHAIN). 

Robust performance of image-based cell segmentation pipeline across various tissue samples.
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On server, ~240,000 cells within 75 FOVs took 1.5hr to identify cell segmentation errors, and additional 2.5hr to complete cell 
segmentation refinement. Further optimization on parallel processing of multiple FOVs/files would further improve the processing speed.

A rapid algorithm to detect cell segmentation error based on transcriptional spatial profiles:

Speed for detecting cells with putative 
segmentation errors

Speed for full segmentation refinement processing

Processing speed on average PC: ~12.4hours to fully process 164 FOVs of 22GB transcript file size, ~ 75k cells, 230M transcripts.
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*Morphology image (CD298/DAPI, fresh fixed U2OS) overlaid 
with decoded transcript spots, mitochondrial probes in red. 


