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Spatial transcriptomics technologies, which produce single-cell gene Cellpose, a generalist approach of neuron network-based cell segmentation!23! Secondly, our pipeline exploits the spatial profile of transcripts on the same tissue section for rapid a b c . .
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biology. Accurate cell segmentation that assigns transcripts to cell transforms noisy intensity distribution into a smooth one. of transcript profiles. Individual transcripts are then scored for goodness-of-fit within their L { L. { original segmentation
locations is critical to data quality, but very chaIIenging for tissue sections Ground-truth of manual annotation is transformed to a vector flow representation via simulated respective cells, based on the probability of each gene belonging to each cell type and the spatial
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multimodal cell segmentation pipeline that automatically does image Cellpose pre-trained models are well trained on diverse datasets. transcript score profile and thus can be easily identified. Our pipeline further identifies the
preprocessing, machine-learning-augmented cell segmentation and Nuclei dataset: fluorescence nuclei, H&E stain spatially connected groups of transcripts with low goodness-of-fit within incorrectly segmented
transcript-based segmentation refinement. We demonstrate our pipeline Cytoplasm dataset: Cytoplasm stain, membrane stain, non-fluorescence cells, non-cell cells. A set of heuristic rules on neighborhood cell typing and transcript number are then applied

Microscopy images, non-microscopy images.

on spatial transcriptomics datasets from various FFPE tissue sections. to the identified transcript groups to decide on the re-segmentation actions, like merging, splitting

a SMI image (singleZ)  overlaid Mesmer Label Cellpose flow overlaid Cellpose Labe and trimming. The re-segmented results show no significant spatial dependency on transcript

SMI is for research use only and not for use in diagnostic procedure. score of individual cells, suggesting the successful correction of poorly segmented cells.
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