nanoString

nCounter[®] CVD Pathophysiology Panel

Gene Expression Panel - Cardiovascular Disease (CVD)

Heart Disease • Arteriosclerosis • Hypertension • Cardiotoxicity • Regenerative Medicine

Rapidly advance your cardiovascular research with molecular insights that provide quick, actionable results. Explore how cardiovascular disfunction contributes to heart disease, hypertension and arteriosclerosis. Study the cardiotoxic effects of immune therapies or assess the role of aging and cell renewal in cardiac regenerative medicine.

Product Highlights

- Directly profile 800 genes across 50 pathways involved in CVD pathophysiology
 - Cardiovascular Pathology
 - Cardiovascular Physiology
 - Vascular Inflammation
 - Cellular Aging & Renewal
 - Metabolism
 - Mechano Signaling
 - Regulatory Signaling
 - Epigenetic Remodeling
- Measure cardiotoxicities resulting from therapeutic treatment
- Study the MOA of approved CVD drugs
- Explore cardiomyocyte recovery and regeneration
- Quantify the presence and relative abundance of 16 cell types present in cardiac tissue
- Compatible with a variety of sample types including blood, cardiac tissue, organoids, stem cells, engineered cell lines, explants, and organs on a chip
- Generate data in 24 hours with less than 30 minutes hands on time and simple data analysis

Feature	Specifications
Number of Targets	800 (Human and Mouse), including 10 internal reference genes for data normalization.
Sample Input - Standard (No amplification required)	25-300 ng
Sample Input - Low Input	As little as 1 ng with nCounter Low Input Kit and Primer Pools (sold separately)
Sample Type(s)	Blood, cardiac biopsies, xenografts, cultured cells/cell lysates, FFPE-derived RNA, total RNA, fragmented RNA
Customizable	Add up to 55 unique genes with Panel-Plus or up to 10 custom protein targets
Time to Results	Approximately 24 hours
Data Analysis	nSolver™ Analysis Software (RUO), Advanced Analysis for cell profiling, ROSALIND® platform

Key Applications with the nCounter CVD Pathophysiology Panel

Panel Themes

The CVD Pathophysiology Panel includes annotations across 8 functional themes related to cardiovascular disfunction and disease. Pathway coverage is outlined in the table below.

Cardiovascular	Pathology	Cardiovascu	lar Physiology	Cardiovascular	Inflammation	Cellular Aging & Renewal
Atherosclerosis Cardiac Hypertrophy Cardiomyopathy Foam Cell Formation Ischemia Myocarditis	 Thrombosis Hemostasis Endocarditis Pericarditis Hypertension 	Angiotensin System Cardiac Muscle Contraction Cardiac Electrophysiology GABAergic Signaling	Vascular Smooth Muscle Contraction Vasopressin System Cardiac Morphogenesis ER Stress	eNOS Activation IL-1 Signaling IL-6 Signaling Other Cytokine Signaling Immune Cell Infiltration JAK-STAT Signaling mTOR Signaling	 NF-kappaB Signaling PI3K-AKT Signaling PPAR Signaling TLR Signaling TNF Signaling Checkpoint Signaling 	 Apoptosis Autophagy Cell Cycle Senescence & Quiescence Telomere Maintenance
Metabo	lism	Mechano	o Signaling	Regulatory	Signaling	Epigenetic Remodeling
Fatty Acid Metabolism	Cholesterol	• ECM Remodeling		Calcium Signaling SGED Consults n	TGF-beta Signaling	Histone Modifications

- Slucose Metabolism
- Hypoxia Response
- Lipid Metabolism
- Lipoprotein Clearance Oxidative Stress Response
 - Integrin Signaling Rho ROCK Signaling
- EGFR Signaling VEGF Signaling • MAPK Signaling Wnt Signaling Notch Signaling
- Acetyl Transfera Deacetylases
- Methyl Transferases

Cardiac Cell Profiling Feature

Genes included in the CVD Pathophysiology Panel provide unique cell profiling data to measure the relative abundance of 16 different cardiac cell types. The table below summarizes the genes included in each cell type signature, as qualified through biostatistical approaches and selected literature in the field of cardiovascular disease

Cell Type	Associated Human Genes
Cardiomyocytes (Atrial, Ventricular)	FHL2, MYL4, MYL7
Fibroblasts	DCN, PDGFRA
Endothelial Cells	CDH5, PECAM1, VWF
Mesothelial Cells	BNC1, MSLN
Vascular Smooth Muscle Cells	MYH11
Pericytes	ABCC9, KCNJ8
Neuronal Cells	NRXN1, PLP1
Adipocytes	FASN, GPAM, LEP
T Cells (Th1, CD45, CD8, Tregs)	PTPRC, CD8A, CD8B, CD3D, CD3E, CD3G, CD6, TBX21, FOXP3
Cytotoxic Cells	CTSW, GNLY, GZMA, GZMB, GZMH, KLRB1, KLRK1, NKG7, PRF1
NK Cells	KIR3DL1, NCR1, XCL1/2
Macrophages	CD163, CD68, CD84, MS4A4A
Dendritic Cells	CCL13, CD209
Neutrophils	CSF3R, FCGR3A/B, FPR1
Mast Cells	CPA3, HDC, MS4A2
B Cells	CD19, MS4A1, SPIB, TNFRSF17

Customization with Panel Plus

Customize your research project by adding up to 55 user-defined genes of interest with nCounter Panel Plus. Panel Plus capacity enables researchers to address content specific to their cardiovascular research areas of interest. Expand on pathways and core themes of the panel or include infectious disease content (i.e. COVID).

nSolver[™] Analysis Software

NanoString offers advanced software tools that address the continuous demands of data analysis and the need to get simple answers to specific biological questions easily. Genes included in the CVD Pathophysiology Panel are annotated to allow for efficient analysis of relevant pathways.

Analysis Modules available for CVD Pathophysiology:

- Normalization
- Differential Expression
- Quality Control
- Individual Pathway Analysis
- · Gene Set Analysis
- Cell Profiling
- Built-in compatibility for Panel Plus and Protein analysis
- FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

ROSALIND ROSALIND[®] Platform

- ROSALIND is a cloud-based platform that enables scientists to analyze and interpret differential gene expression data without the need for bioinformatics or programming skills. ROSALIND makes analysis of nCounter data easy, with guided modules for:
- Normalization / Quality Control / Individual Pathway Analysis Differential Expression / Gene Set Analysis
- nCounter customers can access ROSALIND free of charge at https://www.rosalind.bio/nanostring

Ordering Information

Gene Expression Panels arrive ready-to-use and generally ship within 24 hours following purchase.

Product	Product Description	Quantity	Catalog Number
nCounter® Human CVD Pathophysiology Panel	800 genes, including 10 internal reference genes for data normalization. Codeset Only.	12 Reactions	XT-HSCVD-12
nCounter® Mouse CVD Pathophysiology Panel	800 genes, including 10 internal reference genes for data normalization. Codeset only.	12 Reactions	XT-MSCVD-12
nCounter® Human CVD Pathophysiology Panel Standard	Standard containing a pool of synthetic DNA oligonucleotides that correspond to the target sequence of each of the unique probe targets in the panel.	12 Reactions	PSTD-H-CVD-12
nCounter® Mouse CVD Pathophysiology Panel Standard	Standard containing a pool of synthetic DNA oligonucleotides that correspond to the target sequence of each of the unique probe targets in the panel.	12 Reactions	PSTD-M-CVD-12
Low RNA Input Kit	Kit for use with all Low RNA Input Primer Pools	48 Reactions	LOW-RNA-48
nCounter® Master Kit Reagents and Cartridges	Reagents, cartridges, and consumables necessary for sample processing on nCounter MAX and FLEX Systems	12 Reactions	NAA-AKIT-012
nCounter® SPRINT Cartridge 1 Cartridge, 12 Ianes	Sample Cartridge for nCounter SPRINT System	12 Reactions	SPRINT-CAR-1.0
nCounter SPRINT Reagent Pack	nCounter SPRINT Reagent Pack containing Reagents A, B, C, and Hybridization Buffer	192 Reactions	SPRINT-REAG-KIT

Selected Panel References

- 1. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466-472 (2020).
- 2. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15, 505–522 (2018).
- 3. Fung, G., Luo, H., Qiu, Y., Yang, D. & McManus, B. Myocarditis. Circulation Research 118, 496–514 (2016).
- 4. Liu, Y. et al. RNA-Seq identifies novel myocardial gene expression signatures of heart failure. Genomics 105, 83-89 (2015).
- 5. Sweet, M. E. et al. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics 19, 812 (2018).

For more information visit nanostring.com/CVD

NanoString Technologies, Inc.530 Fairview Avenue NorthTSeattle, Washington 98109F

T (888) 358-6266 F (206) 378-6288

nanostring.com info@nanostring.com Sales Contacts United States us.sales@nanostring.com EMEA: europe.sales@nanostring.com

Asia Pacific & Japan apac.sales@nanostring.com Other Regions info@nanostring.com

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

©2021-2022 NanoString Technologies, Inc. All rights reserved. NanoString, NanoString Technologies, nCounter, nSolver, and the NanoString logo are trademarks or registered trademarks of NanoString Technologies, Inc., in the United States and/or other countries.

JUN 2022 MK4880

