#202 Integrating single cell and spatial gene expression profiling of mouse organogenesis to identify and localize unknown cell types Uw GS i | e s nanostring

Medical Institute ®
Chengxiang Qiu?!, Eva Nichols?, Stephanie Zimmerman?, Alexa Lasley?, Margaret Hoang?, Joe Beechem?, Jay Shendure! NanoString Technologies

530 Fairview Avenue North, Seattle, WA 98109

1. Department of Genome Sciences, University of Washington, Seattle, WA, USA, 2. NanoString® Technologies, Seattle, WA, USA

Major cell clusters in wild type E10.5 embryo show Mapping lateral plate mesoderm trajectories across mid-gestation development

expected spatial patterns

Mammalian organogenesis is a remarkable process, whereby cells within the post-gastrulation embryo continue to rapidly

proliferate while giving rise to the diverse cell types of each organ system, specified by molecular programs that are precisely Some previously unannotated cell types can be identified and relabeled based on spatial location
regulated in time and space. Single cell RNA-sequencing of whole embryos during mouse embryogenesis and organogenesis is
yielding unprecedented detailed views of mammalian development, for example revealing hundreds of unique cell types defined .” .-;H-H ﬁlﬁj%“;ﬁwﬁh%%wT Major cell clusters in the i . o |
by gene expression. Although many methods exist for identification of cell types defined by scRNA-seq, annotating cells remains a T B N o ‘M = %‘J M%%%Eﬁﬁm — Cells derived from the lateral plate
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manual and challenging process. In this work, we sought to leverage spatial gene expression data of mouse organogenesis to — 1 1 " Pty I dataset were mapped to B '""_|'TEme;bmmm N — T 1 I doveloni oo but VI Ig
validate annotations and localize uncertain cell populations to specific tissues or regions. - ] - Ty ' regions of interest in age- — Il EI = eveloping embryo, ut lateral plate
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We used high-resolution scRNA-seq data from mouse development -- specifically, single nucleus transcriptional profiling of — T Y, S o matched E10.5 embryos. l | F 1 | - lI difficult to annotate. To validate and correct
millions of cells done by 3-level combinatorial indexing. This “whole organism profiling” was performed on staged embryos in 2 to 47:5 : ! ) ' ngmg)j laladgdm Heatmap shows enrichmenjc L a e — T |I| | I annotations, we mapped sub-trajectories of
6 hour increments from gastrulation to birth. The resulting single cell profiles were processed by conventional methods and, — J- |- Erfr:h"d"dce..(su Ijh“ of each scRNAseq cell type in 1 | o y I lateral plate mesoderm to spatial locations
although an initial round of manual annotation based on marker genes and earlier generations of atlases was fruitful, many = | b each GeoMx ROI, annotated | l| S e E e o e at matched timepoints in mid-gestation
ambiguities remained. To address these in part, we integrated matched timepoints with spatial whole transcriptome profiles of ::E | P Epigidl - lfp?m.m br:' tlésueN?n(cj SUbngCtur”e n - I e 1l T development. Heatmaps shows enrichment
specific anatomical structures of four timepoints of mid-gestation mouse development generated using the GeoMx® Digital Spatial = d : eesesci) ni):‘ic::fci ennZiEEed . - of each cell type at each timepoint in each
Profiler (DSP). We used a cell type deconvolution algorithm to estimate the abundance of each cell type in each region profiled by ﬂ‘ S o 1 a{FI)eastgone 20| ayre chown ' GeoMx RO, a.nnotated by tissue and
DSP and validated that known cell types such as tissue-specific epithelial cell subtypes localize to the correct anatomical structures — ' l W ot ' s E15.75 M et oo susucrs substru‘ctgr.e in the Gepr ('jata. Only cell
with high accuracy. We then used this method to further map the cell trajectories derived from the lateral plate mesoderm, —C | '| ' Oy I —_— e I o types significantly enriched in at least one
populations which have limited research and are therefore challenging to annotate. — = o °‘“’ E I s e ot i .I o ROl are shown.
Next, we applied this method to understand how dysregulated cell lineage contributes to organ malformation in a developmental :| §:§“'ug(m;§nr§’ 4:‘ rl E ‘ II A
mutant. Absence of embryonic macrophages due to colony stimulating factor 1 receptor (CSF1R) deficiency causes bone and brain {E r g u J Emdr;sgyce" — 1l s et s L 1| I o s o
deformities as well as perinatal lethality in mouse and humans, suggesting important functions in organ formation. We performed | — a o Er u o EH - |
massively scalable RNA single-cell transcriptomics (via single-cell combinatorial indexing RNA sequencing) and GeoMx DSP on E ! 1 s Deiis syt clls [ i | e
E18.5 embryonic tissue sections of wildtype and CSF1R-deficient mutant littermates. We find differential cell type abundance in
both the scRNAseq and between matched spatial regions in wild type and mutant in a wide variety of tissues, suggesting that |

Foregut epithelium

organs beyond bone and brain are impacted by embryonic macrophage loss. In conclusion, this work provides a framework for
integrating spatial data with scRNAseq in an automated pipeline to add spatial annotations to unknown cell types in normal and
pathological samples.

.~ LPM-derived cells, Lrrig+ Epicardial cells (Tbx5+) Example images from an E13.5 embryo demonstrate that spatial

profiling identified that “Lrrig+ LPM derived cells” contribute to
kidney cortex mesenchyme. The “Epicardial cells (Tbx5+)” label can
«imcon D@ CcOrrected to lung mesenchyme. These new annotations can be
. further validated by mapping scRNAseq data to orthogonal spatial
|Z° data with Stereo-seqg. The relabeled lung mesenchyme cell type
maps to lung in this dataset as well.
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Methods: single cell RNAseq and spatial whole transcriptome

profiling of mouse organogenesis
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Massively scalable scRNAseq (sci-RNAseq’2) enables high resolution profiling of mouse organogenesis 7?‘1650 um 03 ) E14.5
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2-6 hour increments across development and
26 major cell type trajectories identified.
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~ GeoMyx Digital Spatial Profiling of 12 major tissues and substructures within those tissues in matched fixed frozen sagittal sections of
jimb bud rabecdlae  wa T littermate E18.5 WT and Csfr1 deficient embryos  High resolution sciRNAseq identifies novel cell types during dynamic processes such

as embryonic development
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The SpatialDecon? algorithm estimates abundances of mixed cell populations in spatially resolved gene expression data using

« Spatial whole transcriptome profiling with GeoMx WTA can localize and annotate
cell profiles derived from scRNAseq and can localize unannotated cell clusters

novel cell types identified by scRNAseq

CsfirWT/WTN WT
CsfirWTWHWT

scRNAseq gene Pre-specified cell Spatially-resolved gene
expression data expression profiles expression data

* In developmental mutants, single cell RNAseq plus spatial gene expression data can

The SpatialDecon algorithm uses log-normal regression to . i . .
link observed pathology to changes in cell abundance, cell localization, or cell state

estimate cell abundances in spatial data based on a
reference gene expression profile for each cell type, and
provides confidence intervals and pvalues for cell
abundance estimates. Data from single cell RNAseq can be
used to construct reference profiles, with cell types
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UMAP clearly separates ROls by tissue

defined by any method of classifying cells into subgroups.
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