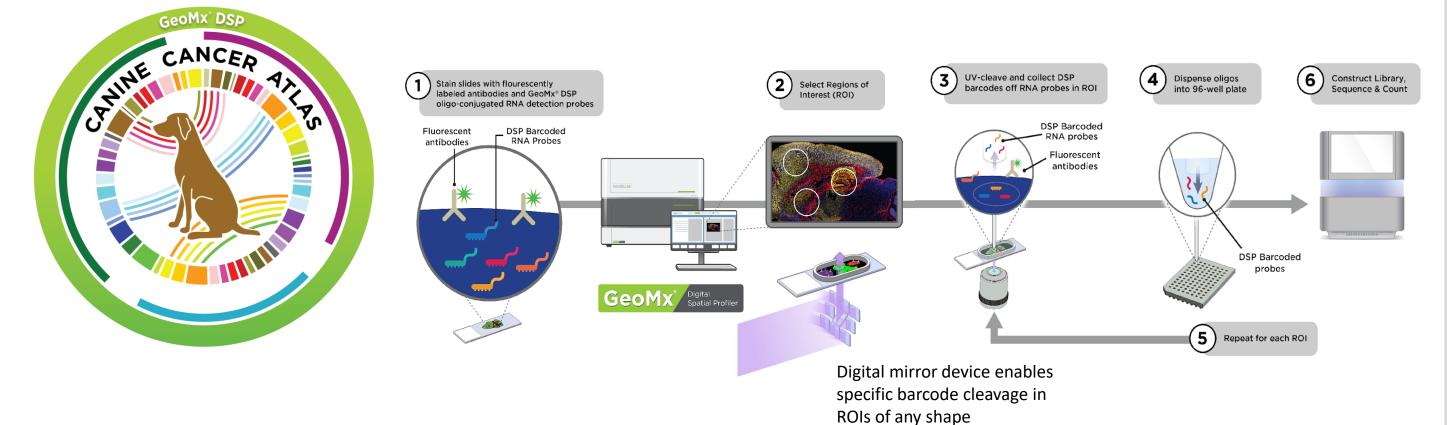
#### High-plex spatial transcriptomic characterization of canine tumor tissue #46

Sarah E Church, Cheryl London, Christine M Toedebusch, Erin Piazza, NanoString GeoMx Canine Consortium

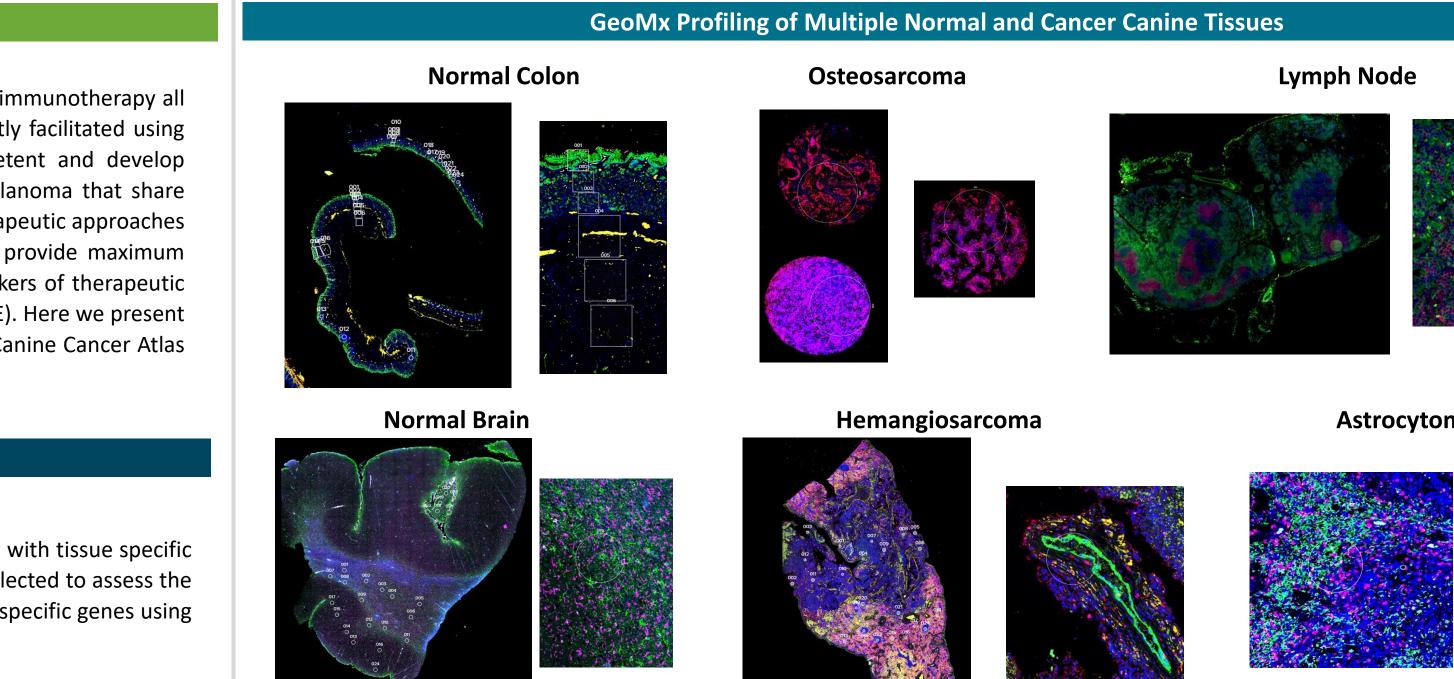

### Background

Combination therapy to treat hematological and solid malignancies including chemotherapy, radiation, targeted and immunotherapy all hold huge potential for eliciting clinical responses. Informative pre-clinical testing of these approaches can be greatly facilitated using immune competent animals with spontaneous tumors. Pet dogs are immunologically outbred, immune competent and develop spontaneous tumors such as non Hodgkin's lymphoma, glioblastoma, osteosarcoma, urothelial carcinoma and melanoma that share remarkable clinical, biological and genetic features with their human counterparts. As such, pre clinical testing of therapeutic approaches in dogs with cancer promises to accurately inform human clinical trial design. For this comparative approach to provide maximum information to accelerate human clinical translation of novel combination therapies and identify correlative biomarkers of therapeutic response, it is necessary to develop research tools for deep interrogation of the canine tumor microenvironment (TME). Here we present spatial transcriptomic analysis of multiple canine tumor and tissue types using GeoMx<sup>®</sup> digital spatial profiler (DSP) Canine Cancer Atlas (CCA) panel.

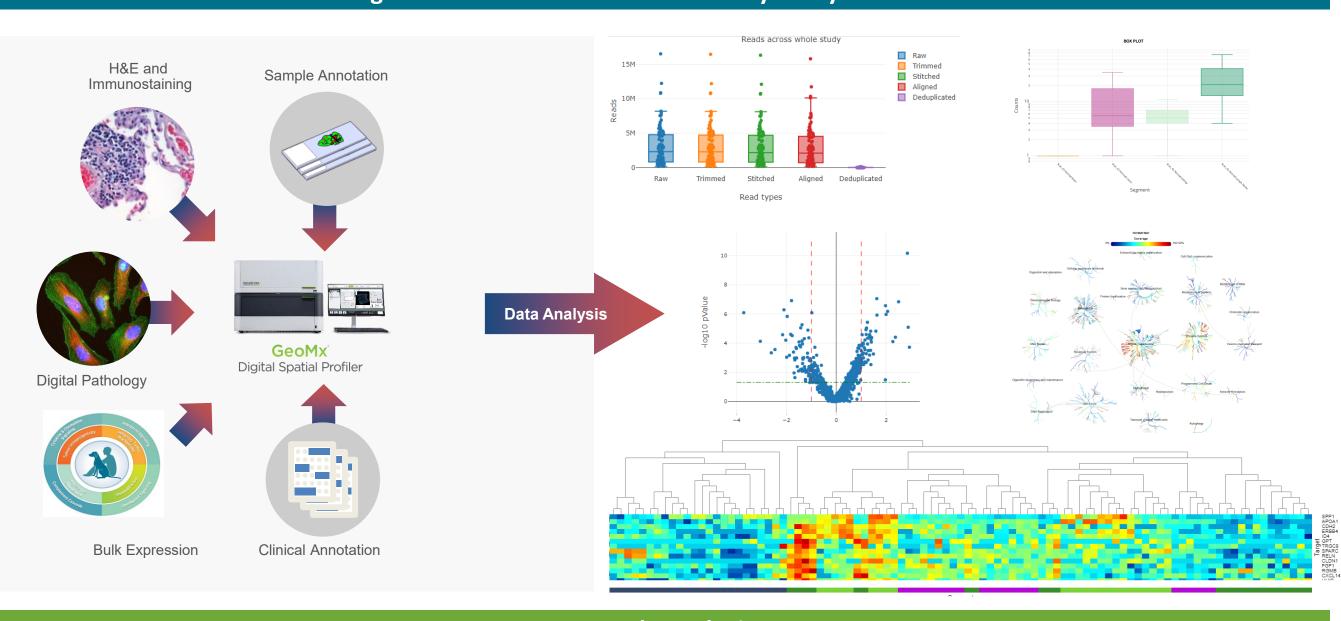
## Methods for Profiling using the GeoMx Canine Cancer Atlas

FFPE slides or tissue microarrays were used to profile tumor and normal tissue from canines. Each slide was stained with tissue specific immunofluorescent antibodies, including PanCK, CD45, Vimentin, IBA1, CD3, and CD45.. Regions of interest were selected to assess the TME and normal tissue as possible. Slides were then run on the DSP using the CCA panel that contains 1962-canine specific genes using standard DSP methods.

## GeoMx Digital Spatial Profiling with the Canine Cancer Atlas enables quantification of 1962 protein-coding genes in precisely defined regions of interest




## Gene coverage and pathways in the GeoMx CCA


| Adaptive Immunity                    |     | Cell Function            |     | Immune Response               |     | Innate Immunity          |     | Metabolism                            |    | Physiology & Disease                |     | Signaling Pathways |     |               |     |
|--------------------------------------|-----|--------------------------|-----|-------------------------------|-----|--------------------------|-----|---------------------------------------|----|-------------------------------------|-----|--------------------|-----|---------------|-----|
| B Cells                              | 35  | Apoptosis                | 121 | Chemokine Signaling           | 121 | Complement System        |     | Amino Acid Synthesis &<br>Transport   | 46 | Angiotensin System                  | 5   | АМРК               | 48  | NO            | 9   |
| BCR Signaling                        | 78  | Autophagy                | 64  | Cytotoxicity                  | 6   | Dendritic Cells          | 22  | Arginine Metabolism                   | 14 | Cancer Type Relevant                | 208 | Androgen           | 34  | Notch         | 83  |
| Cancer Antigens                      | 3   | Cell Adhesion & Motility | 207 | IL-1 Signaling                | 63  | DNA Sensing              | 46  | Fatty Acid Oxidation                  | 7  | Circadian Clock                     | 26  | EGFR               | 20  | p53           | 76  |
| MHC Class I Antigen<br>Presentation  | 61  | Cell Cycle               | 167 | IL-17 Signaling               | 50  | Glycan Sensing           | 59  | Fatty Acid Synthesis                  | 5  | Drug Resistance                     | 6   | ERBB2              | 24  | PDGF          | 33  |
| MHC Class II Antigen<br>Presentation | 18  | Cilium Assembly          | 8   | IL-2 Signaling                | 39  | Host Defense<br>Peptides | 19  | Glutamine Metabolism                  | 9  | Matrix Remodeling and<br>Metastasis | 61  | Estrogen           | 89  | PI3K-Akt      | 252 |
| T Cells                              | 90  | Differentiation          | 250 | IL-6 Signaling                | 19  | Inflammasomes            | 11  | Glycolysis & Glucose Transport        | 28 | Neuroendocrine<br>Function          | 7   | FGFR               | 42  | PPAR          | 20  |
| T-cell Checkpoints                   | 27  | DNA Damage Repair        | 92  | Immune Exhaustion             | 20  | Myeloid<br>Inflammation  | 104 | Glycosylation                         | 12 |                                     |     | FoxO               | 84  | Purinergic    | 5   |
| TCR Signaling                        | 109 | EMT                      | 108 | Interferon Response Genes     | 29  | Neutrophil degranulation | 120 | IDH1/2                                | 10 |                                     |     | GPCR               | 168 | Retinoic Acid | 5   |
| TH1 Differentiation                  | 23  | Endocytosis              | 58  | Lymphocyte Regulation         | 89  | NK Activity              | 93  | Lipid Metabolism                      | 95 |                                     |     | Hedgehog           | 46  | TGF-beta      | 107 |
| TH17 Differentiation                 | 42  | Epigenetic Modification  | 177 | Lymphocyte Trafficking        | 47  | NLR Signaling            | 82  | Mitochondrial Metabolism /<br>TCA     | 55 |                                     |     | HIF1               | 79  | VEGF          | 71  |
| TH2 Differentiation                  | 21  | Immortality & Stemness   | 33  | NF-kB Signaling               | 115 | RAGE Signaling           | 8   | Nucleotide Synthesis                  | 8  |                                     |     | Insulin            | 84  | Wnt           | 137 |
| TH9 Differentiation                  | 11  | Ion Transport            | 42  | Other Interleukin Signaling   | 183 | RNA Sensing              | 60  | Pentose Phosphate Pathway             | 7  |                                     |     | JAK-STAT           | 123 | Нірро         | 8   |
| Treg Differentiation                 | 15  | Lysosome                 | 16  | Prostaglandin<br>Inflammation | 4   | TLR Signaling            | 136 | Tryptophan & Kynurenine<br>Metabolism | 8  |                                     |     | МАРК               | 266 |               |     |
|                                      |     | <b>Oxidative Stress</b>  | 164 | TNF Signaling                 | 94  |                          |     | Vitamin & Cofactor Metabolism         | 23 |                                     |     | MET                | 36  |               |     |
|                                      |     | Phagocytosis             | 100 | Type I Interferon Signaling   | 47  |                          |     |                                       |    |                                     |     | mTOR               | 122 |               |     |
|                                      |     | Proteotoxic Stress       | 19  | Type II Interferon Signaling  | 42  |                          |     |                                       |    |                                     |     | Мус                | 27  |               |     |
|                                      |     | RNA Processing           | 34  | Type III Interferon Signaling | 8   | J                        |     |                                       |    |                                     |     |                    |     |               |     |
|                                      |     | Senescence               | 131 |                               |     |                          |     |                                       |    |                                     |     |                    |     |               |     |

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures. www.nanostring.com | info@nanostring.com

© 2023 NanoString Technologies, Inc.



## Spatial analysis based on tissue morphology, tumor microenvironment and immune infiltrated hotspots

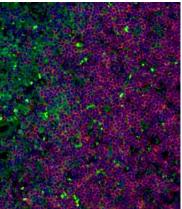


### **Summary and Conclusions**

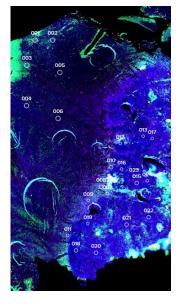
We were able to spatially detect over 1700 genes across multiple tissue types from canines, including osteosarcoma, glioblastoma, melanoma and normal tissues. Genes were detected in spatial compartments including malignant tumor, tumor stroma and normal tissue. Together the GeoMx CCA allow for interrogation of the TME of multiple tumor types and has the potential to inform spatial biomarkers for

response to therapy, as well as translate the effectiveness of these therapies to humans.

## Acknowledgements


The authors would like to thank the NanoString GeoMx Consortium Members for their contribution on development of the assay content and for providing canine tissues to verify the panel content.

# Integrated Individual Gene and Pathway Analysis Built In


## nanoString

530 Fairview Avenue North, Seattle, WA





Astrocytoma





