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Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression–Morphology Analysis in Breast Cancer
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Molecular profiling is central in cancer precision medicine but
remains costly and is based on tumor average profiles. Morphologic
patterns observable in histopathology sections from tumors are
determined by the underlying molecular phenotype and therefore
have the potential to be exploited for the prediction of molecular
phenotypes. We report here the first transcriptome-wide
expression–morphology (EMO) analysis in breast cancer, where
individual deep convolutional neural networks were optimized and
validated for prediction of mRNA expression in 17,695 genes from
hematoxylin and eosin–stained whole slide images. Predicted
expressions in 9,334 (52.75%) genes were significantly associated
with RNA sequencing estimates. We also demonstrated successful
prediction of an mRNA-based proliferation score with established
clinical value. The results were validated in independent internal and
external test datasets. Predicted spatial intratumor variabilities in
expression were validated through spatial transcriptomics profiling.
These results suggest that EMO provides a cost-efficient and scalable
approach to predict both tumor average and intratumor spatial
expression from histopathology images.

Significance: Transcriptome-wide expression morphology deep
learning analysis enables prediction of mRNA expression and
proliferation markers from routine histopathology whole slide
images in breast cancer.
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Introduction

Methods
Data Collection 
The study consists of female patients with breast cancer from three 
data sources: Clinseq-BC (N = 270), The Cancer Genome Atlas (TCGA-
BC; N = 721), and ABiM (N = 350) as an external validation cohort.
Images from Clinseq-BC and TCGA-BC were randomly split into
training (N = 558, 56.30%; 4.08 million H&E tiles), tuning(N = 139,
14.03%; 0.97 million H&E tiles), validation (N = 122,12.31%; 0.90
million H&E tiles), and test sets (N = 172, 17.36%; 1.33 million H&E
tiles). Transcriptome-wide RNA-seq data representing mRNA
expression for a total of 20,477 genes in the reference genome are
collected from these samples.

Data Modeling
For each gene, we optimized one deep convolutional neural
networks (CNN) model with image tiles as predictors and the
sample-level gene expression level obtained from RNA-seq as a
response variable.

Model Validation
From an additional independent collection of 168 tumors with both
FFPE blocks and WSIs available, 24 tumors were selected for ST
profiling using the oncology and immune-oriented gene panel for the
GeoMx® DSP platform (GeoMx Immune Pathways Panel, NanoString
Technologies).

Study Design

Study design and summary
Statistics for transcriptome-wide predictions. A, Overview of the EMO process. In the training phase,
training WSIs (N = 697)were split into image tiles. The tiles (predictors) together with expression levels
(response) across the protein coding transcriptome were used to optimize individual deep CNN models
(Inception V3) for each gene. All optimized models were then applied to predict expression in WSIs in
the validation set (N = 122), association analysis between RNA-seq estimated gene expression values
and predicted values was performed, and candidate models were selected for further validation. The
validation was performed in the internal (N = 172) and external (N = 350) test sets.

Results

GSEA on whole transcripts 

A, Pathway analysis of EMO predictions by GSEA in the Reactome database,

revealing 16 significant pathways. The bar plot shows the log-transformed adjusted

P values for each pathway, and the boxplot shows the model performance in terms

of Spearman’s rho between EMO-predicted and RNA-seq expression (validation set)

for each gene in each individual pathway. B, GSEA results using the Hallmark gene

set, with seven identified pathways.
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Summary of model performance on test sets
A, Distribution of Spearman’s rho in the internal test set. B, Distribution of R2

pred in the internal test set
(Ngenes = 1,011; onegene with a predicted R2 <_0.1 was excluded from the figure for clarity). C,
Distribution of Spearman’s rho in the external test set (Ngenes=995). D, Scatter plot of EMOpredicted and
RNA-seq estimated gene expression values for the 25 top performing genes in the internal test set. E,
Scatter plot of EMO-predicted and RNA-seq estimated gene expression values for the same 25 genes in
the external test set.

ST validation of spatial 
expression predictions.
A, Overview of the ST profiling
process. For each WSI (top left),
optimized CNN models for the genes
in the ST gene panel were used to
predict spatial (tile-level) expression,
visualized as heatmaps. Twelve ROIs
(yellow squares) were subsequently
manually selected to obtain are a
presentative set of regions including
low, medium, and high predicted
expression across a range of genes
(top right). The ROIs from each slide
were then manually registered
against fluorescently labeled slides
from consecutive FFPE sections
(bottom left). ST profiling of the ROIs
was performed and subsequently
used to validate spatial EMO
prediction results (bottom right).

B, Bar plot for the ranked
_log10(FDR-adjusted P value) for
genes from each LME model. Light
blue indicates FDR-adjusted P <0.05
(NWSIs = 22). C, Corresponding fixed-
effect coefficients and 95% CI related
to the EMO prediction for each gene
(linear mixed effects model;NWSIs =
22).Wang et al.5122
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Proliferation score prediction and validation. 

A, Comparison between IHC score and EMO-predicted proliferation score

[P.Score(EMO)]) for 37 IHC-HE pairs of tumors in the test set. The IHC-based Ki67

score per tile is indicated in blue (<10%), yellow (≥10% and <30%), and red (≥30%).

The color scheme for EMO predictions was chosen based on quantile mapping to

the IHC score distribution, with blue, yellow, and red indicating low, medium, and

high predicted proliferation levels,respectively. B, Distribution of proliferation scores

by subtype in the validation set, measured with RNA-seq [P.Score(RNA-seq)]. C,

Distribution of proliferation scores by subtype in the validation set, predicted by

EMO. The distribution of predicted proliferation scores shares similar patterns with

RNA-seq measurements, with the basal type exhibiting the highest proliferation

level, followed by HER2-enriched (Her2) and luminal B (LumB) subtypes, whereas

luminal A (LumA) has the lowest proliferation score. D, Scatter plot of RNA-seq–

estimated and EMO-predicted proliferation scores in the validation set (N=122).A

high correlation between the RNAseq measurements and EMO predictions was

observed with a Spearman’s rho of 0.67. E–G, Corresponds to B–D for the internal

test set (N=172). H, Scatter plot of RNAseq–estimated and EMO-predicted

proliferation scores in the external test set (N = 350).
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