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Introduction

Named Nature Journals Method of the Year in 2020, high-plex 

spatial transcriptomics continues to advance, currently able to 

perform at single-cell and sub-cellular resolution (e.g., He et al.1). 

As spatial technologies revolutionize almost every area of life 

sciences and translational sciences, nearly all medical and basic 

biology researchers are educating themselves on the critical 

criteria for selecting the appropriate model of this powerful new 

class of single-cell spatial molecular imager to purchase for their 

labs and research centers. As a means of guiding those decisions, 

this article provides a framework for selecting the best spatial 

imagers, emphasizing the technical performance specifications 

that most directly influence the net information content obtained 

from this new technology. 

In order to make appropriate recommendations, it is first necessary 

to qualify the type of research question being addressed. This 

review is for any researcher entering the field of spatial biology 

with a desire to measure as many biological processes in tissues 

and engineered cells as possible (e.g., signaling pathways, 

ligand-receptor interactions, biomarkers of response to therapy, 

developmental organogenesis, understanding heterogeneity in 

tissue, etc.) on a spatial scale that spans enough tissue to capture 

the true heterogeneity of biological samples (e.g., over ~100,000 

cells at a time per sample). To that end, this review focuses on the 

more finely detailed technical specifications important for selecting 

a spatial imager. Also included is a table of the specifications 

of molecular imagers (Table A1 in Appendix 1) which includes 

parameters requiring less detailed technical analysis that are still 

necessary for making an instrument selection. This article therefore 

focuses on the finer technical details critical to the system's overall 

performance capability.

Key Technical Specification Parameters

The two key parameters for evaluating the performance of a 

spatial imaging platform are its:

Single-Cell Spatial Molecular Imaging Technologies  
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1. Multiplexing Capability: This parameter determines the 

breadth of biological information you can spatially resolve. 

The higher the plex of a spatial assay, the greater the ability to 

observe multiple biological processes operating in the tissue 

under study. Higher plex capabilities also yield a higher number 

of total measured transcripts per cell (sensitivity, defined below) 

than lower plex assays.

2. Data Accuracy: How reliable is the data collected by a spatial 

imaging platform? To answer this question, it is important to 

understand the parameters for assessing data accuracy. Although 

there are multiple contributing sources of error in molecular 

imaging, it is critical to rank them in terms of their impact on data 

accuracy. The most critical factor affecting data accuracy is cell 

segmentation error (Table 1 and Fig. 3), which dominates all other 

error terms due to misassignment of gene transcript localization. 

Other dominant sources of error, namely rates of false positive 

and false negative RNA, have a much smaller (nearly negligible) 

impact on most spatial analyses, especially when compared 

to the greater magnitude of segmentation errors. Appropriate 

assignment of cell segmentation is therefore the key factor for 

generating accurate data.

Performance Metrics

The performance of a spatial imager can be evaluated on 

two axes: multiplexing capability and accuracy (Table 1). 
Multiplexing capability results from both the abundance and 

diversity of data that is measured by evaluating hundreds of 

genes simultaneously, which provides a breadth of biological 

insights for exploring a wide range of scientific questions with 

significant statistical power. Accuracy refers to the reliability of 

the generated data by minimizing the influence of experimental 

errors, thus providing faithful biological content. The CosMx 

Spatial Molecular Imager (SMI) is a high-plex in situ imaging 

platform that provides spatial multiomics at cellular and 

subcellular resolution.

Executive Summary

• Maximizing the multiplex capabilities (a.k.a. “plexity”) of spatial assays yields the highest sensitivity (number of transcripts/cell) and 

greatest power in understanding all the spatial biology (number of genes/cell) of a tissue sample. 

• Cell segmentation errors are by far the largest source of error in molecular imaging. 

• Coupling multi-omic analysis (simultaneous imaging of protein and RNA on a single-slide) with advanced machine-learning software 

can minimize cell segmentation errors while providing unique insights into spatial biology not provided by single-omic analysis.  
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Category Parameter Metric Impact

Multiplexing   
 Capability

Sensitivity Mean number of transcripts detected above 
background per cell (or unit cellular area)

Accuracy of biological analyses. The ability to 
understand the biological state of individual cells  
(e.g. activation, signaling)  

Genomic breadth Number of genes detected per cell  
(and per sample) 

Broader biological insights, such as biomarker 
discovery, ligand-receptor interaction, and pathway 
analysis 

Accuracy 

Cell 
segmentation 
error

“Gold standard” segmentation error is still 
quantified using visual examination. Mean 
counts of misassigned transcripts1 minus mean 
counts of negative probes is introduced here as 
an exploratory automatable surrogate. 

Misleading results due to spatial bias in gene expression
(Highest impact on data quality)

False positive Mean counts of negative control probes Noise leads to reduced statistical power  
(low impact2 compared to segmentation error)

False negative See Note3 Noise leads to reduced statistical power  
(low impact2 compared to segmentation error)

TABLE 1: Key single-cell spatial performance metrics.

1 Cell segmentation errors predominately derived from incorrectly segmented neighboring cells. 
2 Spatial single-cell data involve the examination of spatial correlations amongst 100’s-of-thousands to millions of single cells.  The impact of false positives and false negatives, that 
have negligible spatial correlation, really eliminates these as a major complicating factor in spatial analysis. There are exceptions to this general rule, but keep in mind the key two 
questions this review addresses (listed above).  
3 Note that a false negative occurs when transcripts present in the cell fail to be detected. False negatives for RNA are an intrinsic part of all single-cell data sets, as evidenced 
by the fact that no high-plex technology currently invented detects the number of transcripts commonly believed to exist in a typical cell, an average of 100,000 to 1,000,000 
transcripts per cell (Islam S. et al.2). Single-cell RNA-seq (scRNA-seq) solves this issue primarily by cluster analysis of related cells while spatial single-cell technology primarily 
solves it by direct spatial correlation of gene-expression data (see discussion below). There are exceptions to this general rule, but keep in mind the key two questions this review 
addresses (listed above). 

Multiplexing Capability 

The most important question about a spatial imager is: How 

much biology can researchers see with this instrument? Will the 

spatial data provide only a cell-type map, or will it support more 

advanced analyses?  

Single-cell spatial imagers are designed to visualize and quantify 

molecular information within individual cells in a tissue. Imagers 

that can deliver a more comprehensive view of the biological 

state (i.e. higher plex) provide both broader and deeper spatial 

biological insights to researchers. The multiplexing capability metric 

is quantified by two parameters: sensitivity (number of transcripts 

detected per cell) and genomic breadth (number of genes detected 

per cell; Table 1).

Sensitivity (total transcripts measured per cell): In designing 

highly multiplexed assays, a fundamental question is: maximum 

multiplexing of what? The CosMx SMI high-plex assays are designed 

to measure as many protein-coding mRNAs as possible. While the 

CosMx SMI has the flexibility to spike-in additional RNA types into 

its high-plex assays (non-coding RNAs, splice isoforms, circular 

RNAs, etc.), the fundamental panel is designed to maximize the 

detection of protein-coding genes. Based on that design objective, 

optimizing the analytical sensitivity of the assay requires an ability 

to measure single unique transcripts in as small a sample as can 

be accurately measured (Saah & Hoover3). In the case of protein-

coding transcripts, the samples consist of tissues or cells that can 

be analyzed for quantitation of the number of transcripts per cell, 

with the smallest sample size, due to biological heterogeneity, being 

thousands of cells. Hence, a spatial biology imager with maximal 

sensitivity can detect the highest number of total transcripts 

measured per cell over a spatial domain of at least 100,000 cells.

Another way to think about sensitivity is with the equation from 

Yerushalmy et al4: 

Sensitivity of GeneX = (1 – false negative rate of GeneX)

Single-cell spatial performance = Multiplexing capability and accuracy
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Figure 1. Box plot showing the number of unique transcripts detected per cell, above 
the negative control probe background level, from FFPE mouse brain sample assayed 
with the CosMx Mouse Neuroscience Panel (https://nanostring.com/products/cosmx-
spatial-molecular-imager/cosmx-panels-assays/cosmx-mouse-neuroscience-panel/). 

NOTE: The net counts/cell will vary widely depending on the sample studied and 
panel used, especially with human FFPE samples. The range of counts/cell for a 
1,000-plex panel using a 5 µm thick FFPE sample will range anywhere from 100 
transcripts/cell to as many as 1,500 transcripts/cell, depending mainly on pre-
analytical variables (especially with human samples) that are challenging to control 
for (e.g., sample fixation time, excisional biopsy surgical ischemic time, sample 
storage temperature, sample exposure to oxygen/humidity, etc.). We have found that 
if low transcripts per cell are measured using a high-plex panel due to pre-analytical 
variables, that same sample will show significantly lower counts when using a lower 
plex panel, proportional to the degree of plex in the assay. 

However, this equation for calculating sensitivity is for a 1-plex 

assay, whereas the revolution in spatial biology has been driven 

by increasing the multiplexity of spatial assays. A better estimate 

of high-plex spatial sensitivity may therefore require changing 

the frame-of-reference of the sensitivity equation from 1 gene to 1 

spatial multiplexed assay, as so: 

Sensitivity (Spatial Assay) = 1 – false negative rate (Spatial Assay)   

For the CosMx SMI, the Spatial Assay is equivalent to the 

measurement of as many protein-coding gene transcripts as 

possible (which currently number 1,000, and will reach 6,000 in Q1 

of 2024). Defining sensitivity at the assay level as an overall sum of 

protein-coding transcripts allows high-plex spatial imagers to follow 

the exact same sensitivity specifications as scRNA-seq, in which the 

number of transcripts detected per single cell (sensitivity) and the 

number of genes per single cell (genomic breadth, discussed below) 

are maximized. The greater the number of RNA molecules detected 

per cell, and the larger the diversity of genes detected (per cell and 

per sample), the deeper the insights into the biology of each cell. 

Background counts should be estimated with negative cell-type 

marker genes as described below, as well as with the external RNA 

control consortium counts (ERCC)5 when provided in the assay.  

RNA assays performed in high-plex spatial imagers (> 1,000-plex) 

such as the CosMx SMI excel their sensitivity from their ability to 

detect a high number of transcripts above background per cell in 

various tissue types. To highlight what is possible with the CosMx SMI, 

a dataset generated using the CosMx Mouse Neuroscience Panel on 

FFPE mouse brain tissue is publicly available  (https://nanostring.

com/products/cosmx-spatial-molecular-imager/ffpe-dataset/). This 

dataset showcases a top level of sensitivity, with an average of more 

than one thousand transcripts per cell detected (Figure 1).

Multiplexing Capability (Genomic Breadth): The multiplexing 

capability of a spatial imaging platform gives genomic breadth to 

the data derived from its assays by detecting a larger number of 

expressed genes than previously possible. Genomic breadth on a 

multiplex scale reveals the wide range of genes in a cell at one time, 

thus providing clues to the diversity of the biological phenomena at 

work in specific cell types and guiding which biological hypotheses 

are worth characterizing. Greater genomic breadth (measured as 

the number of genes with total counts study-wide > 2 Standard 

Deviation (SD) above the mean total counts from negative control 

probes) therefore means more potentially relevant hypotheses to 

test. CosMx RNA assays are designed to provide genomic breadth 

with their ultra-high-plex RNA panels that can detect high numbers 

of genes per sample. The CosMx mouse neuroscience dataset 

generated from brain tissue demonstrated the genomic breadth 

performance of the CosMx SMI, with 854 and 903 genes detected 

above the negative control probe background in its two samples 

(transcript-count data shown in Figure 1). 

Currently, panels for the CosMx SMI all focus on measuring 

protein-coding genes, and do so at the 1,000-plex level, which 

translates to a comprehensive genomic breadth of approximately 

5%, assuming approximately 20,000 protein-coding genes in 

humans (1,000/20,000). This will increase to approximately 

a 30% comprehensive genomic breadth when the 6,000-plex 

CosMx assay launches in 2024, with further increases expected 

in the near future through ongoing efforts to develop spatial 

assays with higher plex levels. Additionally, a complete range of 

panels is being developed at a variety of levels of protein-coding 

gene coverage. Fortunately, the efficiency of multiplex spatial 

imaging technology prevents dramatic increases in assay run-

times as one increases plex capacity. For example, the increase 

in run-time of the CosMx 6,000-plex panel is only about 1.68-fold 

greater than the run-time of the CosMx 1,000-plex assay even 

though transcript coverage increases six-fold.  

To examine whether increases in genomic breadth impact data 

analyses proportionally with increased plexity, a complete 950-

plex CosMx dataset was compared to a 250-plex subset randomly 

selected from those same 950 genes (Figure 2). The result of this 

analysis suggests that an assay capable of identifying a maximum of 

250 targets yields fewer testable hypotheses than an assay with 950 

targets. For example, the experiment shown in Figure 2 detected 

https://nanostring.com/products/cosmx-spatial-molecular-imager/cosmx-panels-assays/cosmx-mouse-neuro
https://nanostring.com/products/cosmx-spatial-molecular-imager/cosmx-panels-assays/cosmx-mouse-neuro
https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/
https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/
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Figure 2. Impact of genomic breadth on data analyses as seen with two different plex-level assays. Analyses were performed on a complete 950-plex CosMx dataset and a 
randomly selected 250-plex subset of the same data. 1st row Differential expression results comparing gene expression in astrocytes between two spatial niches. 2nd row Gene Set 
Enrichment Analysis (GSEA) for Reactome Pathways. Only pathways with ≥50% of genes in the panel and ≥5 genes were considered. 3rd row Spatial correlation analysis (>0.5) of 
gene pairs. 4th row Bars show a spatial correlation between ligand-receptor pairs defined by CellChatDB (see: cellchat.org)

894 genes expressed from the 950 gene panel compared to 239 

from the randomly selected 250 gene panel (top row of Figure 
2). Simple cell-type gene expression identification such as this can 

be equated to a simple hypothesis phrased as “Gene X expression 

plays a role in the function of cell Y” for each gene identified. 

The larger plex panel thus generated nearly four times as many 

hypotheses as the smaller plex panel. Such hypotheses can then 

be further refined by deeper analysis of the expressed genes via 

such relationships as Reactome pathways (row 2 of Figure 2), 

spatial correlation (row 3 of Figure 2), and ligand-receptor pairs 

(row 4 of Figure 2) to identify biologically relevant hypotheses 

embedded in the data. Reactome pathway analysis, for example, 

provides the starkest contrast between the 950-plex panel and 

the 250-plex panel, yielding 34 identified pathways compared 

to zero, respectively. Hypotheses generated from the biological 

information in data uncovered due to the genomic breadth of a 

950-plex panel (soon to be higher) will accelerate studies of gene 

expression changes across space and cell type, driving biomarker 

discovery, pathway analysis, and ligand-receptor interaction, in 

addition to the cell-typing analysis.(Figure 2). 

How does a cell type 

change across space? 

e.g. How do microglia 

near tau plaques 

change behavior? How 

do T-cells near tumors 

change expression?

What pathways  

participate in these 

changes?

What genes are spatially 

correlated?

What ligand-receptor  

pairs are spatially  

interacting?

Differential, 

expression, 

SpatialDE

GSEA,  

ssGSEA

Lee's L, 

spatialDE

COMMOT, 

Lee's L

Question Examples 950-plex results (894 genes detected) 250-plex results (239 genes detected)

894  
hypotheses; 
68 "hits"

239  
hypotheses; 
23 "hits"

34 Reactome 
pathways 
with >50% 
coverage; 10 
are significant

8942 = 720,801 
hypotheses, 
1,662 spatially 
correlated 
gene pairs

58 LR pairs 1 LR pairs

2392 = 57,121 
hypotheses, 140 
spatially correlated 
gene pairs

0 Reactome 
pathways with 
>50% coverage
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Accuracy 

Evaluating the performance accuracy of spatial imagers is most simply 

assessed by characterizing how well the measured gene expression 

profiles reflect the true expression profiles of the cells in question. 

Assessing accuracy of a spatial imager requires quantifying the three 

major types of errors that reduce accuracy of the spatial imaging data: 

inaccurate cell segmentation, which leads to the assignment of RNA 

transcripts to the wrong cells; false positives, the detection of non-

specifically bound RNA probes; and false negatives, not detecting the 

existing RNA molecules. Of these three error modes, cell segmentation 

error has the greatest impact on spatial analyses (see Figure 4). Each 

of these error modes is discussed in detail below along with proposed 

metrics for each error type.

Cell segmentation error: The most fundamental function of 

a single-cell spatial imager is the ability to accurately assign 

molecules to individual cells in a sample. Assignment of detected 

transcripts requires the imager to identify the proper coordinates 

of the molecule within the cellular boundaries inferred by a 

segmentation algorithm. Cellular boundary assignment, also 

known as cell segmentation, needs to be highly accurate for 

properly assigning detected RNA molecules to the correct cells. 

Inaccurate cell segmentation, in extreme cases, can create spatial 

“doublets” where one cell represents a hybrid of adjacent cell types. 

Assignment of an RNA transcript to the wrong cell type or a hybrid 

of adjacent cell types creates inaccurate data analysis by grouping 

cells with their spatial neighbors, leading to incorrect results that 

appear statistically significant, critically affecting spatial imager 

performance. Unfortunately, cell segmentation errors are still 

relatively abundant (best case = 5% to 10% of cells )6,1, even though 

segmentation algorithms continue to improve. An example of the 

impact of segmentation errors on spatial imaging data is illustrated 

by considering T cells in a cancer study. Poor cell segmentation 

assignments can cause T cells in close proximity to tumor cells to 

appear to falsely express tumor genes (Figure 3A). Similarly, poorly 

defined T cells in the stroma will falsely appear to express genes 

from stromal populations such as fibroblasts. A study comparing 

T cells in tumor tissue to T cells in the stroma would, in this case, 

make it hard to discern genuine differences in T cell expression 

across different spatial contexts since genes from tumor cells and 

fibroblasts are among the most statistically significant genes. These 

types of errors cause artifacts in downstream data analysis such as 

clustering, differential gene expression, and pathway analysis, leading 

to inappropriate conclusions about results.

To date, there are no simple metrics for measuring cell segmentation 

errors. However, systematic visual examination is often sufficient to 

distinguish between appropriate and inappropriate cell segmentation 

performance, but has yet to be automated. An alternative to estimate 

segmentation error instead of visual inspection is analysis of negative 

cell type marker genes. Using existing scRNA-seq datasets to identify 

genes known to be absent in a given cell type, negative cell type 

marker analysis (Appendix 2) calculates the average negative control 

probe background-subtracted expression of each negative cell type 

marker gene in the cells of a tissue sample. This surrogate assay has 

been used to estimate, in orders of magnitude, levels of segmentation 

error compared to other error sources for examined samples 

(Figure 4). One caveat: these negative marker genes are generally 

low expressers across all cell types, but segmentation errors will drive 

more background in genes with high expression in other cell types. 

This approach likely underestimates background from segmentation 

error. However, due to the direction of this bias, this analysis suffices 

to demonstrate the important contribution of segmentation errors 

to total background. As can be seen, the negative marker counts are 

larger than the false positive codes, which are larger than the False 

Codes. Calculating the ratio of this effect per cell-type shows that 

segmentation error is greater than false positive codes (negative code 

in graph) by ~ 3 times. Choosing negative marker genes is a difficult 

task; our selected negative markers are focused on low expressers and 

may underestimate the average rate of transcript misassignment. While 

imperfect, particularly regarding its sensitivity to gene choice and cell 

typing accuracy, we believe negative cell type marker gene analysis 

clearly indicates that segmentation error is the key factor in spatial 

imager data accuracy, deserving a focused effort by the stakeholding 

research community. Although more research is needed to derive an 

objective and robust measure of mis-segmentation rates, at this point, 

the best method for comparing two segmentation algorithms is still 

visual examination. 

NanoString Technologies has a long-standing research initiative 

in this important area. The CosMx SMI utilizes sophisticated cell 

segmentation based on an enhanced CellPose algorithm (Stringer 

et al.6) that combines information from cell membrane proteins, 

nuclei, and RNA. This algorithm has been trained and tested on 

hundreds of different tissue-type specimens measured on the 

CosMx SMI, to date representing over 50 million single cells. As 

shown in Figures 3B-D, the CosMx SMI effectively segments 

complex cells, outperforming other platforms employing nuclear 

expansion segmentation strategies, especially when cells are 

dispersed or have complex shapes. 

Additional advances in complex-shaped cell segmentation algorithms 

have recently been made by NanoString Technologies and can 

be found in the CosMx SMI abstracts, posters, and talks. In brief, 

high-plex protein and high-plex RNA assays combined with the 

plasma membrane (and other key cell features) detection on a 

same slide have enabled the segmentation of complex-shaped 

cells (e.g. brain cells). These information-rich raw-data are analyzed 

using a combination of machine-learning/artificial-intelligence 

software and classic methods to generate a highly detailed cell 



Figure 4. Background noise from different 
false positive sources. Mean counts of 
FalseCodes, negative control probes 
(ERCCs), and negative cell-type-marker 
genes are shown for distinct cell types 
in the CosMx mouse brain dataset. 
The cell segmentation error (counts 
of negative cell-type-marker genes) 
is the major source of false counts. 
Despite our approach’s tendency to 
underestimate segmentation error, the 
ratio of segmentation error over negative 
probe error ranges from 2.1 to 4.6, with 
a mean of 3.2 times larger segmentation 
error than negative probe error (false 
positives). CosMx SMI’s segmentation 
capability with lower error rates is 
currently best-in-class. For very simplistic 
high-plex segmentation methods (e.g., 
15 µm expansion beyond a DAPI nuclear 
signal to estimate cell boundaries) 
used in other platforms, a larger effect 
on segmentation error is expected. 
Note: Choosing negative marker genes 
is a difficult task; the above selected 
negative markers are biased towards low 
expressers; thus, they underestimate the 
average rate of transcript misassignment. 
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Figure 3. Transcript assignment quality. A) The cartoon depicts 
the impact of minor segmentation errors, leading to the 
assignment of incorrect genes to a cell, subsequently giving 
rise to artifacts in downstream data analysis such as clustering, 
differential gene expression, and pathway analysis. (B and 
C) The CosMx assay uses antibody-based protein detection 
morphology markers (cell membrane) and nuclear staining for 
cell segmentation, whereas D) other spatial imagers often utilize 
simple nuclear expansion (~15 µm) for cell segmentation as 
shown here with the same image using simplified polygons for 
ease of visualization. 

B C D

A



segmentation pattern. Where most imagers typically discard half 

of total measured transcripts in brain samples, due to an inability 

to map the complex-shaped cells back to any particular single cell, 

NanoString now has the ability to accurately segment human brain 

cells up to 1 millimeter in size. These advances will greatly reduce the 

large fraction of discarded “orphan” transcripts in brain images, and 

simultaneously increase our understanding of the spatially resolved 

intracellular regulation of gene expression and biological reactions. 

This advanced segmentation approach is also being applied 

to non-brain tissue, with the expectation of minimizing nearly 

all imaging-based errors associated with the cell segmentation 

process. However, there may be an insurmountable lower limit of 

segmentation error due to the fraction of cells in tissues spatially 

intertwined and physically overlapping which may need to be 

deconvolved mathematically from each other.  

This discussion of cell segmentation error is intended to highlight 

a dominant error term in selecting a spatial imager. More than 

just a software problem, good segmentation requires good input 

data that maximizes plasma-membrane signals from as many 

targets as possible. While some spatial molecular imaging systems 

leave all segmentation problems for open-source software to 

solve, CosMx SMI technology has focused on the critical issue of 

segmentation from the very beginning of instrument and chemistry 

design, developing instruments that use machine learning-guided 

segmentation based on imaging analysis of labeled protein 

morphology markers on the same slide as high-plex RNA assays. 

Future CosMx SMI cell segmentation data will be further enhanced 

by enabling ultra-high-plex protein (~ 100-plex) and ultra-high-

plex RNA (~ 6,000-plex) analysis on the same slide. This high-plex 

multi-omic data will enable the highest quality automated cell 

segmentation to date. 

False positive errors: False positives occur when a spatial 

imager detects a signal for non-specific probe binding. False 

positives are typically caused by two factors: either optical 

crowding, causing a misreading of genes in the absence of 

any probe binding, resulting in a barcode reading error; or 

hybridization probes non-specifically bind within the tissue. 

To overcome optical crowding, the CosMx SMI uses System 

Controls which represent target barcodes not present in the 

assay ("FalseCodes") to quantify this phenomenon, so that even 

at high-density transcripts per cell (over 1,000/cell), optical 

crowding is not a common source of errors. Non-specific binding 

can be controlled by using multiple negative control probes, 

typically artificial mRNA sequences not expressed by any known 

organisms, selected from the ERCC5. We recommend estimating 

false positive counts by calculating the mean counts per negative 

ERCC control probe per cell to define the combined impact of 

barcode reading error and non-specific binding.

While it is important to control for false positives during any 

imaging assay, it is not, as stated above, the main source of error 

affecting data accuracy for spatial molecular imagers (Table 2). As 

seen in Figure 4, negative control counts for false positives account 

for significantly less data errors than do those for negative cell-type-

marker genes, the surrogate measure for cell segmentation errors. 

Therefore, controls for cell segmentation errors are the most critical 

for accurate data analysis. A true understanding of the dataset 

accuracy requires estimating background signals using biological 

controls in combination with negative cell-type-marker genes in 

addition to relying on false positive counts of ERCC controls. This 

approach is one way to estimate this error term, but more work 

needs to be done in this area to establish objective, automatable 

estimators of cell segmentation errors.  

False negative errors: The failure of a technology to detect a 

present molecule is a false negative. Such events are common 

in single-cell profiling platforms which tend to produce sparse 

datasets where genes are frequently measured with 0 counts 

in most cells. As such false negatives can be assessed both at a 

single-analyte level and across the platform as a whole. When 

validating new technologies such as spatial molecular imagers, 

it is necessary to compare its sensitivity against a “Gold 

Source of  
background

How to  
measure Abundance Impact

False positive Negative control 
probes Low-moderate LOW 

Noise, loss of statistical power when analyzing few cells 

Cell segmentation 
error 

Negative  
cell-type-  
marker genes

Moderate-high  
Depending on segmentation accuracy 

HIGH 
Bias, spurious statistical significance

TABLE 2: Parameters impacting the background of spatial imagers
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Standard” technique. While there are various “Gold Standard” methods 

available for comparison, currently only scRNA-seq has the multiplex 

capacity for state-of-the-art spatial molecular imager comparisons. 

The preferred method using scRNA-seq is to compute the ratio of the 

single-cell sensitivities of the two platforms and compare their signal 

correlations using the ratio of mean background-subtracted transcripts 

per cell (Figure 5; formulas available in Appendix A2). Background can 

be estimated with either negative control probes or negative markers 

genes, with awareness of the limitations of these respective approaches. 

Negative control probes do not measure segmentation error, as such, 

a small number of genes in the analysis will be expected to have high 

outlier sensitivity values arising from segmentation errors. A complete 

sensitivity comparison will summarize these ratios across multiple genes 

and multiple cell types, giving a broad picture of the sensitivity and false 

negative error rate for spatial molecular imaging. 

In many cases, the fact that spatial imaging platforms sample cells at a 

much higher rate than single-cell (average study size within the HCA87 

is 124.8k cells from 19.4 donors, which represents a very small 26.9-

87.5 mm2 area collection with the CosMx SMI9,8) will help overcome 

challenges with data sparsity and false negatives. However, certain 

biological problems require an even higher level of sensitivity, and in 

such cases false negatives can become a dominant error term. When 

a critical cell type is rare or poorly sampled, or a transcript is low-

abundance and poorly correlated with other targets on the panel, it 

becomes harder to use shared information content between targets 

to infer expression of these rare targets. These cases are beyond the 

scope of this white paper, but it is recommended that for biological 

problems for which it is essential to measure a single gene (or a small 

number of genes), lower-plex technologies be used since their false 

negative rates can be closer to zero. A good example of this type 

of technology is single-molecule fluorescent in situ hybridization 

(smFISH), which can detect 1 to 20 different transcripts at a time in 

a single cell, in effect trading  multiplex capacity for near-zero false 

negative rates and extremely limited dynamic range. CosMx SMI 

imaging chemistry has been designed to “parallel” the strengths of 

scRNA-seq technology that maximize the total transcripts per cell and 

genes measured per cell while simultaneously maintaining the x, y, and 

z coordinates of each RNA that is measured.

Conclusions

The evaluation of single cell spatial imager performance requires 

careful consideration of the dataset accuracy, sensitivity, and 

multiplexing capability. The CosMx SMI platform and assay 

development process was designed with these dominant 

technical terms in mind (He et al.1). The best-in-class plexity of 

the CosMx SMI allows the highest sensitivity assay (as defined 

by total transcripts per cell) and broadest biological functional 

range (as defined by total number of different genes measured 

per cell), parameters that made scRNA-seq a successful 

technology innovation, and should therefore be used to evaluate 

spatial molecular imaging technologies. 

Additionally, the best-in-class segmentation method utilized by the 

CosMx SMI is based on same-slide high-plex RNA and protein imaging 

coupled with advanced machine-learning-enhanced segmentation 

to reliably define cellular and nuclear boundaries. The CosMx SMI 

surpasses other molecular imaging platforms by generating the best 

possible raw multi-omic imaging data for use with advanced cell-

segmentation software. Therefore, when evaluating high-plex spatial 

molecular imagers, it is best to focus on the multiplexing capability, 

sensitivity, and segmentation accuracy during the selection process.

Figure 5 A) The single-cell RNA-seq versus CosMx SMI gene-by-gene sensitivity (and correlation) is measured by comparing mean raw transcripts counts per major cell type per 
gene (negative probe background subtracted). Here, the CosMx SMI mouse brain dataset is compared with scRNA-seq data (Zeisel et al.7). Each data point is a specific gene in a 
specific cell type. B) Box plot showing genes’ mean sensitivity ratio (in log2) for the CosMx dataset over scRNA-seq data for each cell type for targets expressed in the top 60% of 
single-cell sequencing data. Log2 mean ratios shown above each cell type. On average, the CosMx SMI has ~4.6X greater sensitivity than scRNA-seq in this comparison, though this 
may be influenced by sample quality and sequencing depth of scRNA-seq.
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Appendix 1:

Table A1: “Easy-to-understand" Operational Features of Molecular Imagers. Each feature should be considered when selecting a molecular imager instrument.

Feature Specification Comment

Sample-Type(s)
Formalin-Fixed Paraffin-Embedded (FFPE), 
Fresh-Frozen, Fixed-Frozen, Organoids, Fixed-
Cells, etc. 

FFPE tissue is the most challenging sample to examine compared to other 
tissue and cell types. The key instrument specification to look for is the 
minimal value of DV200 (preferably) or RIN score where samples can be 
measured. The lower the input requirements for FFPE the better. Real-world 
biobanked tissue samples often have a DV200 index below 50%. The CosMx 
SMI has been shown to generate data from FFPE tissue with the DV200 
indexes down to ~20% (RIN score too low to measure, He et al.1).

Multi-Omic 
Capability

Molecular Imagers should have the capability 
to detect both RNA and Protein.  At single-
cell resolution, both analyte types must be 
measured on the same slide and tissue section.  

In general, all studies benefit from multi-omic interrogation. Higher plex 
protein and RNA examined simultaneously will generate more comprehensive 
data. The CosMx SMI uses 4-plex protein plus highest plexity RNA on the 
same slide in 2023, extending to full high-plex protein (~100-plex protein) and 
6,000-plex RNA on the same slide in 2024. 

Workflow & 
Automation

Normal Pathology IHC workflow or typically 
“other”

Normal pathology is preferred for scaling up projects or using automated 
tissue processing instrumentation (e.g., Leica Bond RX) for sample prep. 
Workflows differing from a normal pathology IHC workflow should have the 
proposed process examined in detail. The CosMx SMI uses a standard IHC 
workflow that can be semi-automated on standard pathology-grade tissue 
processors.

Imaging Area per 
slide or per run  
(for multi-slide 
systems)

Larger imaging areas per instrument run yield 
more data.  A minimum imageable area per 
slide should be at least 1 cm2. 

Tissues are heterogeneous, making it critical to image large areas of tissue 
for a fuller biological picture. The ability to examine multiple slides per run 
further enhances the robustness of data from a study. The CosMx SMI uses up 
to 4 slides per run, with 3.00 cm2 imaging area per slide for a total imaging 
area of 12 cm2 per run.

Localization Error 
(spatial resolution)

The localization of each RNA molecule needs 
to be at the single-cell level (<1 µm). Ideally, 
subcellular localization of RNAs should be 
possible (~0.1 µm).

The spatial resolution specification of an imager refers to the pure optical 
properties of resolving two points of light in close proximity. Ideally, the 
spatial imaging platform utilizes a super-resolution type of detection 
(implemented in cyclic imaging systems) that localizes RNAs well below the 
optical (diffraction-limited) spatial resolution. The CosMx SMI utilizes super-
resolution imaging software to achieve <50 nm localization capability in the X 
and Y coordinates (He et al.1, see Supplemental Figure S2).   

Does the 
instrument destroy 
the tissue under 
investigation 
to make a 
measurement?

The ability to measure gene signals without 
destroying the tissue sample feature is highly 
desirable. Ideally, samples are NOT destroyed 
during measurement. Based on the sample 
type or sample quality, not every sample can 
be re-analyzed after a run, but many quality 
samples can be run multiple times (especially 
for protein-based work).  

Methods that digest a sample onto a capture array or clear a sample before 
use destroy the sample under investigation and cannot be re-examined. 
The CosMx SMI avoids sample destruction during measurement, and often 
the tissue can be re-examined for additional RNA or protein content by the 
CosMx SMI or another technology (e.g., NGS for bulk genomic sequencing, 
subsequent H&E staining, etc.). 

Instrument turn-
around-time (TAT)

Due to their operational principles (cyclic 
imaging), Molecular Imagers have rather long 
per-slide and per-run TATs. When comparing 
specifications, it is critical to examine the 
plexity level AND imaging area of the TAT spec. 
Lower-plex and smaller imaging areas certainly 
lower TAT, but are less than ideal for resolving 
the maximal amount of information per sample.   

TAT per slide often does not equate to TAT per sample, as systems with 
larger imaging areas per slide often accommodate multiple samples per 
slide, increasing the TAT per slide while lowering the TAT per sample. The 
CosMx SMI can examine from 2 to 20 slides per week depending on the plex 
and sample size. For CosMx primary-path samples (1 cm2 per slide), expect 
approximately 2-4 slides per week. 
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Appendix 2: Procedures for calculating 
performance metrics

Identifying negative marker genes 
Using a reference scRNA-seq dataset, identify genes that  

have zero or near-zero expression in a given cell type. 

Alternatively, use prior biological knowledge about highly 

specific genes. (The former approach is preferred, as it 

identifies more negative marker genes.) Avoid excessively fine 

cell typing. 

Sensitivity: number of transcripts detected per cell above 
background   
Report the mean cell’s total counts minus the estimated total 

background counts per cell:

(mean total gene counts per cell) –(mean total negprobe counts per cell) 

Genomic breadth: number of genes above background  

We define analyzable genes as those whose total signal is 2 

standard deviations (SDs) above the total signal from negative 

control probes:

(total counts of gene) > mean(total counts per negative control) + 2 

SD(total counts per negative control)

A more nuanced analysis would be to perform this calculation 

separately for each cell type in a study. This analysis can also be 

performed using negative marker genes instead of negative probes.

False positives: mean counts of negative control probes   
Report the mean false positive counts per cell: 

µf = (mean total negative control probe counts per cell) / (n negative 

control probes)

Mean total background 

1. For each cell type k:

a. Identify negative marker genes (see above)

b. Calculate mean counts per gene per cell of the negative  

    marker genes. Call this bk.

2. Report the weighted average of the cell types’ bk values, with 

weight determined by each cell type’s abundance nk:

Cell segmentation error: Mean counts of negative marker genes minus 
negative control probes

1.  Calculate the mean total background (µb above).

2. Calculate the mean false positive rate per cell (µf above).

3. Report total background minus background from false positives:   

    µb – µf.

It is also worth examining each negative marker gene in each cell 

type, as in Figure 4. This will produce a wide range of values, giving 

a fuller accounting of the varying rates of contaminating counts from 

segmentation errors that you can expect to see.

Proportion of false counts per cell

A common metric, though one with unclear implications for data 

analysis, is the share of false transcripts across an entire dataset. A 

more informative metric looks at the share of false counts in the gene 

expression profiles of the cells, i.e., including cell segmentation errors. 

This “false count rate” can be calculated as: 

(Mean total background µb) ∙ (number of genes) ∙ (number of cells) / 

(total gene counts in cells). 

Relative sensitivity between two platforms 
This calculation assumes that comparable runs are available from each 

platform: the same kind of tissue, in the same regions, with similar cell 

type composition, and similar sample quality. Using serial sections from 

the same tissue is ideal. It also assumes that the cell type composition of 

both samples is equivalent, or is a subset of a given cell type:

1. For platform i:

a. Calculate the mean counts per negative control probe per cell.   

    Call this µf
(i).

b. Calculate the mean counts per cell of each gene.  

    For gene g, call this µg
(i).

2. For all genes g shared by both platforms, calculate (µg
(1)– µf

(1)) /  

(µg
(2) – µf

(2)).

3. Report the median of (µg
(1)– µf

(1)) / (µg
(2) – µf

(2)) over all  

shared genes g.

When the cell type composition cannot be assumed to be equivalent, 

we recommend performing the above calculations separately for each 

cell type. This will produce a matrix of relative sensitivity estimates over 

genes x cell types. Remove low-abundance cell types (e.g., < 1,000 

cells), then report the median value of the matrix. To avoid targets with 

virtually no observations in sparse datasets, we tested the top 60% of 

data in the reference dataset.

µb =
1 

∑k nk

∑knk bk

(n genes in panel) 

(n negprobes in panel)
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