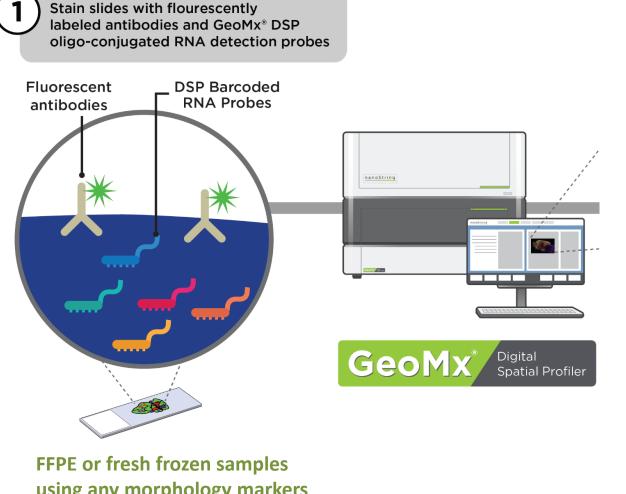
NanoString Technologies
530 Fairview Avenue North, Seattle, WA 98109

Sarah Church, Ben Sutton, Erin Piazza, and Kyla Teplitz NanoString Technologies, Seattle, WA 98109

Abstract

Combination therapy to treat hematological and solid including chemotherapy, malignancies, radiation, targeted and immunotherapy, all hold huge potential for eliciting clinical responses. Informative pre-clinical testing of these approaches can be greatly facilitated using immune competent animals with spontaneous tumors. Most pet dogs are immunologically outbred, immune competent and develop spontaneous tumors such as non-Hodgkin's lymphoma, glioblastoma, osteosarcoma, urothelial carcinoma and melanoma that share remarkable clinical, biological and genetic features with their human counterparts. As such, pre-clinical testing of therapeutic approaches in dogs with cancer promises to accurately inform human clinical trial design. For this comparative approach to provide maximum information to accelerate human clinical translation of novel combination therapies and identify correlative biomarkers of therapeutic response, it is necessary to develop research tools for deep interrogation of the canine tumor microenvironment (TME). Here, we present spatial transcriptomic analysis of multiple canine tumor and tissue types using the GeoMx® digital spatial profiler (DSP) Canine Cancer Atlas panel.

GeoMx Canine Cancer Atlas


Formalin-fixed paraffin-embedded (FFPE) slides or tissue microarrays were used to profile tumor and normal tissue from canines. Each slide was stained with tissue specific immunofluorescent antibodies, including pancytokeratin (PanCK), CD45, Vimentin, IBA1, and CD3.

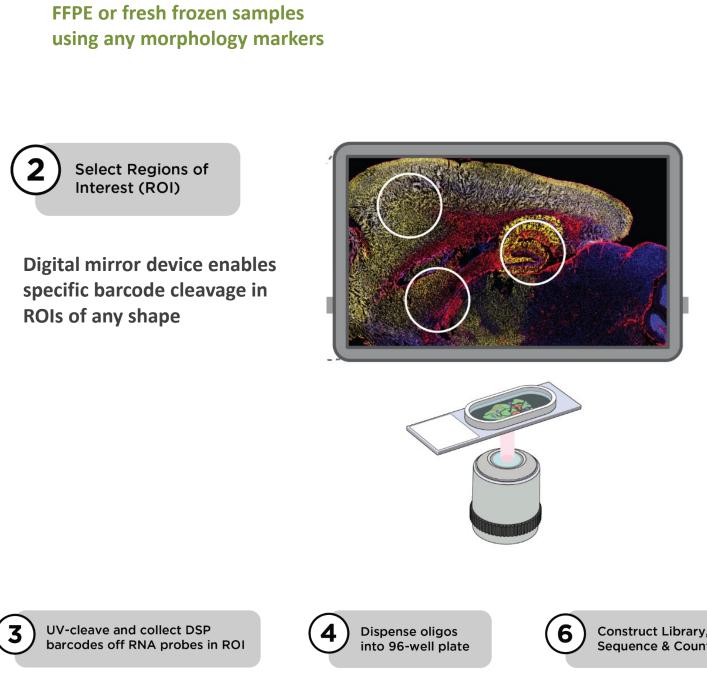

Regions of interest were selected to assess the TME and normal tissue for a comparison as possible. Tissue slides were then run on the DSP instrument using standard DSP methods. We leveraged the Canine Cancer Atlas panel that contains 1,962-canine-specific genes for transcriptomic profiling.

Figure 1. GeoMx Digital Spatial Profiling with the Canine Cancer Atlas enables quantification of 1,962 protein-coding genes in precisely defined regions of interest. The spike-in up to 400 custom RNA targets is also available to add-in probes for non-coding RNA, synthetic DNA, or exogenous genes.

Methods for Transcriptomic Profiling using the GeoMx Canine Cancer Atlas

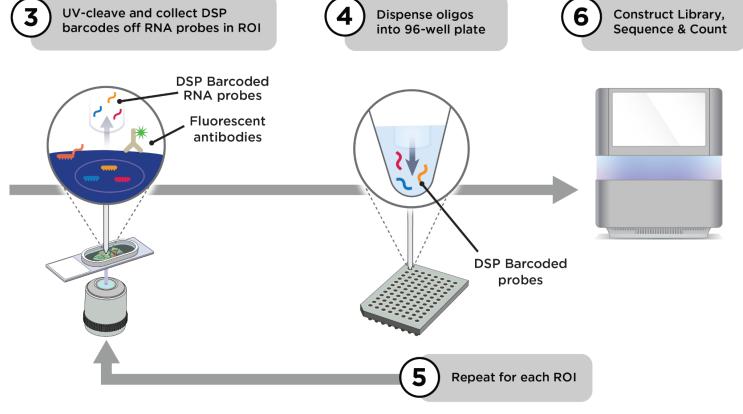


Figure 2. GeoMx Workflow with NGS Readout for the Canine Cancer Atlas.

Gene Coverage and Pathways in the GeoMx Canine Cancer Atlas

Adaptive Immunity		Cell Function		Immune Response		Innate Immunity		Metabolism		Physiology & Disease		Signaling Pathways			
B Cells	35	Apoptosis	121	Chemokine Signaling	121	Complement System	48	Amino Acid Synthesis & Transport	46	Angiotensin System	5	AMPK	48	NO	9
BCR Signaling	78	Autophagy	64	Cytotoxicity	6	Dendritic Cells	22	Arginine Metabolism	14	Cancer Type Relevant	208	Androgen	34	Notch	83
Cancer Antigens	3	Cell Adhesion & Motility	207	IL-1 Signaling	63	DNA Sensing	46	Fatty Acid Oxidation	7	Circadian Clock	26	EGFR	20	p53	76
MHC Class I Antigen Presentation	61	Cell Cycle	167	IL-17 Signaling	50	Glycan Sensing	59	Fatty Acid Synthesis	5	Drug Resistance	6	ERBB2	24	PDGF	33
MHC Class II Antigen Presentation	18	Cilium Assembly	8	IL-2 Signaling	39	Host Defense Peptides	19	Glutamine Metabolism	9	Matrix Remodeling and Metastasis	61	Estrogen	89	PI3K-Akt	252
T Cells	90	Differentiation	250	IL-6 Signaling	19	Inflammasomes	11	Glycolysis & Glucose Transport	28	Neuroendocrine Function	7	FGFR	42	PPAR	20
T-cell Checkpoints	27	DNA Damage Repair	92	Immune Exhaustion	20	Myeloid Inflammation	104	Glycosylation	12			FoxO	84	Purinergic	5
TCR Signaling	109	EMT	108	Interferon Response Genes	29	Neutrophil degranulation	120	IDH1/2	10			GPCR	168	Retinoic Acid	5
TH1 Differentiation	23	Endocytosis	58	Lymphocyte Regulation	89	NK Activity	93	Lipid Metabolism	95			Hedgehog	46	TGF-beta	107
TH17 Differentiation	42	Epigenetic Modification	177	Lymphocyte Trafficking	47	NLR Signaling	82	Mitochondrial Metabolism / TCA	55			HIF1	79	VEGF	71
TH2 Differentiation	21	Immortality & Stemness	33	NF-kB Signaling	115	RAGE Signaling	8	Nucleotide Synthesis	8			Insulin	84	Wnt	137
TH9 Differentiation	11	Ion Transport	42	Other Interleukin Signaling	183	RNA Sensing	60	Pentose Phosphate Pathway	7			JAK-STAT	123	Hippo	8
Treg Differentiation	15	Lysosome	16	Prostaglandin Inflammation	4	TLR Signaling	136	Tryptophan & Kynurenine Metabolism	8			MAPK	266		
		Oxidative Stress	164	TNF Signaling	94			Vitamin & Cofactor Metabolism	23			MET	36		
		Phagocytosis	100	Type I Interferon Signaling	47							mTOR	122		
		Proteotoxic Stress	19	Type II Interferon Signaling	42							Мус	27		
		RNA Processing	34	Type III Interferon Signaling	8										
		Conocconco	121												

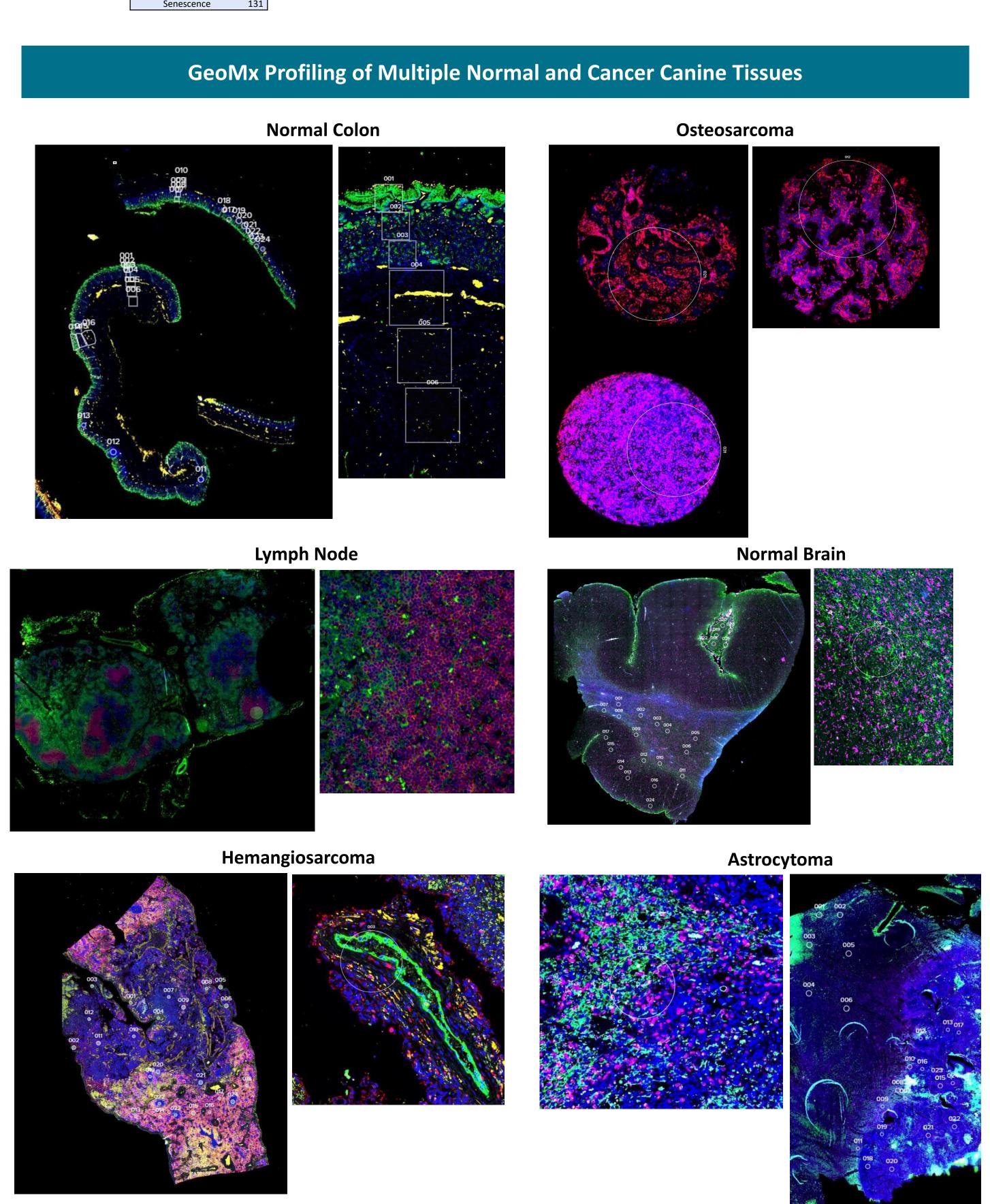
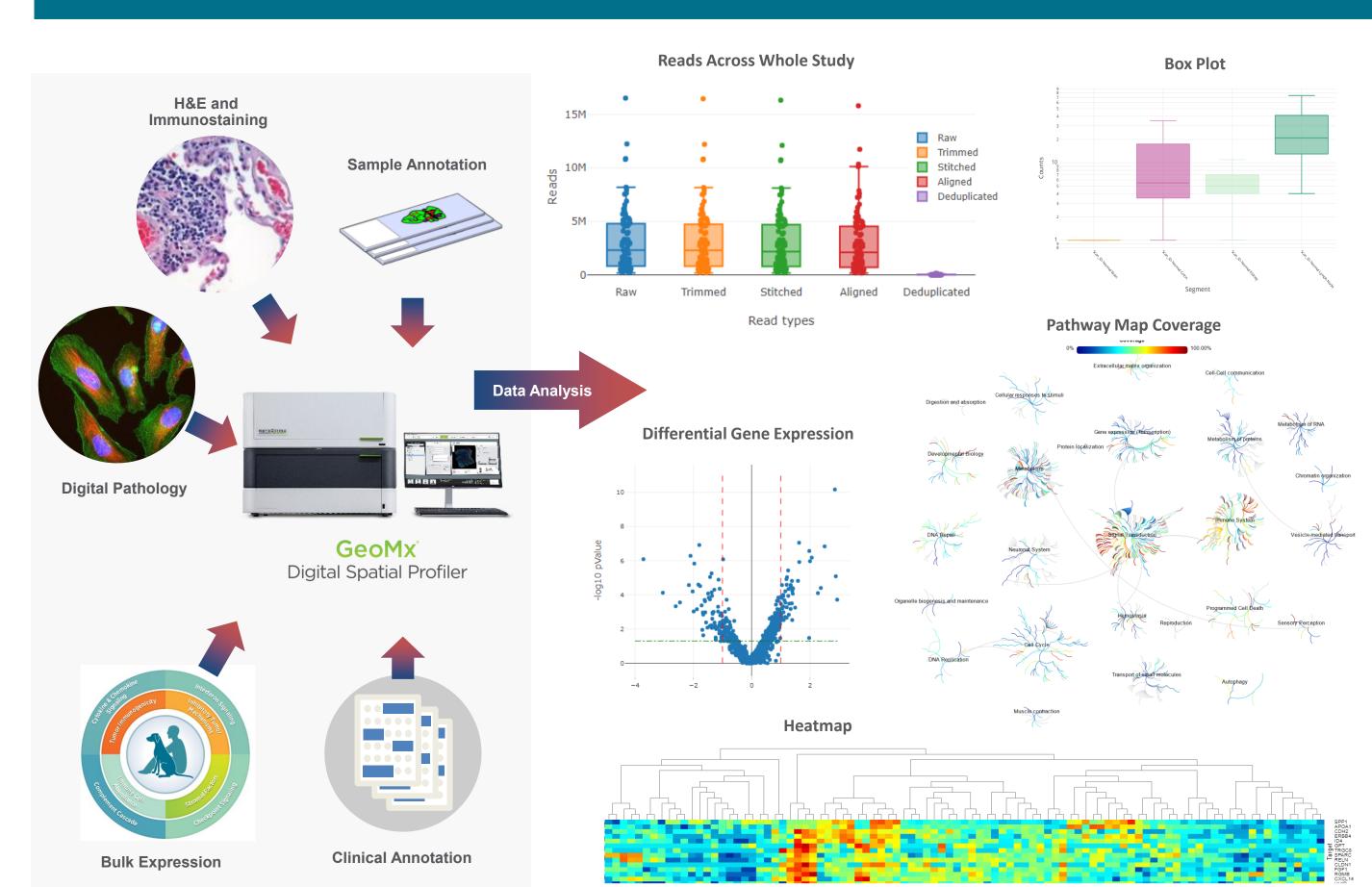



Figure 3. GeoMx spatial analysis based on tissue morphology, tumor microenvironment, and immune infiltrated hotspots in various tissue types.

Integrated Individual Gene and Pathway Built-In Analysis

Summary and Conclusions

We were able to spatially detect over 1,700 genes across multiple tissue types from canines, including osteosarcoma, glioblastoma, melanoma and normal tissues. Genes were detected in spatial compartments including malignant tumor, tumor stroma and normal tissue.

Together, the GeoMx Canine Cancer Atlas allows for interrogation of the TME of multiple tumor types and has the potential to inform spatial biomarkers for response to therapy, as well as translate the effectiveness of these therapies to humans.

Acknowledgements

The authors would like to thank the NanoString GeoMx Consortium Members for their contribution to the development of the assay content and for providing canine tissues to verify the panel content.

Scan here to download or learn more

