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Breakthroughs in Spatial Biology: 
AGBT 2025 Highlights
AGBT 2025 was a whirlwind of innovation and excitement. Our Morning Buzz Sessions provided deep dives into the latest in spatial biology each day, while our Brews with Bruker gatherings served up 
lively conversation over craft brews. We also hosted a Silver Sponsor Workshop, where experts led in-depth discussions across all Bruker platforms. Whether you joined us in person or are catching up 
from afar, check out the posters we presented and stay caught up on our latest scientific breakthroughs.

This poster introduces a new cell segmentation approach 
tailored to the intricate shapes found in brain tissue, which is 
especially useful when performing high-coverage spatial 
research with the CosMx Whole Transcriptome panel. By 
training a specialized neural network on diverse neuronal 
cell types and employing a “high-recovery” post-processing 
method, we show how our pipeline captures challenging 
star-like and elongated cells that more generic models often 
miss. In practical tests on FFPE human brain samples, the 
improved segmentation recovers more transcripts per cell, 
removes “ghost” cells, and yields higher-quality data for 
downstream analyses. 

Cell Segmentation for Complex 
Neural Cell Morphologies & 
CosMx Whole Transcriptomics 
Brain Imaging 

Read the Full Poster

CosMx SMI Spatially Resolved 
Whole Transcriptome in FFPE 
Tissue – A Paradigm Shift for 
Tissue Analysis 
This poster showcases how CosMx® Whole Transcriptome 
(WTX) technology overcomes the limitations of tissue 
dissociation and single-cell capture in conventional single-
cell RNA sequencing (scRNA-seq). By profiling adjacent 
FFPE sections in parallel with droplet-based scRNA-seq, we 
demonstrate that CosMx WTX can detect a highly 
comparable set of genes while fully preserving spatial 
context. Additionally, we capture extremely rare cell types 
commonly lost in dissociation-based methods. We also 
highlight the workflow’s exceptional throughput, recovering 
hundreds of thousands of cells and delivering more 
comprehensive data than scRNA-seq alone. 

Read the Full Poster

Watch On-Demand

Expanding the Limits of Spatial 
Biology: Comprehensive 
Integrated Technologies for 
Spatial Multiomics
Our Silver Sponsor Workshop is now available to stream on 
demand! Catch up on all of our technology announcements:

• 3D genome exploration with the new PaintScape
platform

• Pathways-first biology with the world’s only unbiased,
single-cell whole transcriptome solution using CosMx® SMI

• Unparalleled discovery multiomics with GeoMx® WTA +
over 1000 proteins

• Improvements in data and image quality with the
PowerOMX engine for the CellScape platform

• New customer success programs

This poster introduces InSituDiff, a new computational 
framework for identifying how disease or other perturbations 
reshape cellular neighborhoods based on CosMx SMI 
spatial transcriptomics data. By comparing neighborhoods in 
infected or diseased tissues to their closest match in healthy 
controls, InSituDiff builds a “perturbation matrix” for each 
gene, highlighting which genes (and which areas) are most 
changed. We then employ standard single-cell analytics 
(clustering, network analysis, etc.) on these perturbation 
profiles, revealing spatially correlated gene modules and 
distinct “perturbation domains.” 

InSituDiff: Disease-Driven 
Changes in Cellular 
Neighborhoods as a Window into 
Spatial Transcriptomics 

Read the Full Poster

Streamlining Imaging-Based 
Spatial Biology with EpicIF –
A Universal Signal Removal 
Strategy
This poster demonstrates how EpicIF technology enables 
flexible, high-plex immunofluorescence on the same tissue 
section, removing existing fluorescence signals after each 
imaging cycle to streamline multi-omic assays. By coupling 
iterative protein immunofluorescence, RNA-FISH, and an in 
situ proximity ligation assay (isPLA) on a single FFPE slide, 
we pinpoint not only protein and transcript levels but also 
direct protein–protein interactions (PD-1/PD-L1). We 
illustrate this with an invasive ductal carcinoma sample, 
profiling tumor and immune cells (including tertiary lymphoid 
structures) to reveal nuanced immunoregulatory processes 
in the tumor microenvironment. 

Read the Full Poster

Connecting Form and Function: 
Mapping Microglial Spatial Biology 
in a Mouse Model of Acute and 
Chronic Ischemic Stroke
This poster highlights how CosMx SMI can map microglial 
form and function in the mouse brain following ischemic 
stroke. By combining single-cell proteomics with 
morphological analysis, our collaborative partnership with 
University of Arizona researchers captures how microglia 
transition from surveillance to injury-response states and 
reveals distinct gene expression patterns in infarcted versus 
healthy regions. Notably, we demonstrate that proteins like 
TMEM119, Cathepsin B, and DAP12 change in both 
intensity and spatial distribution as you move away from the 
infarct core, indicating functional heterogeneity across brain 
regions. 

Read the Full Poster

For Research Use Only. Not for use in diagnostic procedures.

https://go.brukerspatialbiology.com/Spatial_Beyond_Limits.html
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CosMx® SMI Spatially Resolved Whole Transcriptome in 
FFPE Tissue – A Paradigm Shift for Tissue Analysis
Yi Cui, Shanshan He, Michael Patrick, Megan Vandenberg,
Evelyn Metzger, Stefan Rogers, Kathy Ton, Dan McGuire, Haiyan
Zhai, Margaret Hoang, Michael Rhodes, Joseph Beechem

Bruker Spatial Biology, Seattle, USA

For Research Use Only. Not for use in diagnostic procedures.

Scan here to download 
or learn more

Spatial technologies allow the dissection of cells in their native
context but lacked the ability to interrogate the whole transcriptome.
The CosMx® Whole Transcriptome (WTX) panel, by combining whole
transcriptome profiling with nanometer spatial mapping, enables
direct analysis and visualization in challenging samples without the
limitations of tissue dissociation and cell lysis.
In this study, we benchmarked CosMx WTX against droplet-based
scRNA-seq. By processing adjacent sections from the same FFPE
block tissue on both techniques, CosMx WTX demonstrated highly
comparable detection efficiency with scRNA-seq, delivering
consistent cell identification for major cell types. CosMx WTX
produced data on over 95% of the cells in the input sample, without
dissociative loss of irregularly shaped cell types or extremely rare cell
types typically seen in scRNA-seq.
Our cross-platform evaluation highlights CosMx WTX accuracy,
scalability, and versatility, positioning it as a transformative tool for
various research applications. Its unparalleled spatial resolution and
whole transcriptome coverage set it apart, offering a more
comprehensive and spatially informed view of cellular function and
tissue structure, which has the potential to address traditional
scRNA-seq applications, while simultaneously enabling biological
insights with spatial context.

Introduction

CosMx WTX panel Design

Spatially resolved info. Subcellular resolution 3D space positioning

Fig. 1 Schematic of the CosMx probe design and cyclic hybridization. Target RNAs are
first bound to a set of primary ISH probes, followed by hybridization with photocleavable,
fluorescent secondary “reporters”. The “hybridization-imaging-cleavage-rehybridization” is
programed to barcode 18,935 gene targets in human transcriptome.

Fig. 2 The CosMx WTX panel enables full coverage of human protein-coding genes
(genomic loci as shown in the T2T karyotype density diagram), and visualization in spatial
context with subcellular resolution and 3D localization capability.

Experimental Design

Workflow summary of benchmarking CosMx WTX panel performance against the droplet
based scRNA-seq technique (using Miltenyi Biotec’s FFPE Tissue Dissociation Kit for
RNA Profiling and 10x Chromium Flex Gene Expression). The brief sample input/yield
numbers are based on matching the cost on each platform. The Chromium run and
scRNA-sequencing was carried out by Azenta Inc. a formally certified service provider.

Fig. 3 Workflow summary of data analysis with CosMx WTX panel. Gene expression
matrix went through Log1P normalization, z-score transformation, principal component
analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Then
unsupervised Leiden clustering was performed, followed by spatial mapping of cell
clusters to tissue space. For comparison with scRNA-seq, obtained Leiden clusters were
annotated based on marker gene expression and identity-matched between the platforms.

CosMx WTX Enables Unbiased Tissue Cell Coverage CosMx WTX Enables Detection of Extremely Rare Cells

Key metrics comparison between CosMx and Chromium in FFPE colorectal carcinoma
(*Genes with high dynamic range refer to single-cell expression spanning >(0-10) counts)

Fig. 4  Comparison for total gene transcripts and unique genes detected per cell between 
the platforms. The long tail in the scRNA-seq data indicates existence of multiplets.  

Fig. 5  UMAP and primary cell types detected by scRNA-seq and CosMx are consistent

Fig. 6  Across each primary cell type, the detection efficiency of CosMx WTX is equal to, 
or better than scRNA-seq

Fig. 7 Regarding composition of cell types, normal muscle and epithelial cells are largely
underrepresented in scRNA-seq, probably due to irregular shape or densely packed
nature. Regarding the gene expression of tumor cells, both platforms are concordant

Fig. 8 Pathway and Ligand-Receptor (L-R) Interactions identified global and spatial tumor
heterogeneity. (A) Main tumor content highlighted with red color. (B) Selected pathway
enrichment scores. (C) Global view of pathway enrichment. (D) L-R enrichment in tumor.

CosMx WTX Provides Spatial Context to Cell-Cell Interaction

Key metrics comparison between CosMx and Chromium in FFPE normal pancreas 
(*SNR was calculated based on the negative probes included in the CosMx WTX panel)

Fig. 9  Comparison for total gene transcripts and unique genes detected per cell between 
the platforms. The double-peak in the scRNA-seq data indicates insufficient dissociation.  

Fig. 10 UMAP and primary cell types detected in scRNA-seq and CosMx datasets are
consistent, while the extremely rare cell type (e.g., Epsilon cells) is missed in scRNA-seq
data, largely due to its low throughput

Fig. 11 The endocrine Epsilon cells (producing the hormone ghrelin) constitutes less than
0.05% of all cells in healthy pancreas, which requires high-throughput panels to efficiently
capture them. In the CosMx dataset, about 130 Epsilon cells were recovered out of ~0.4M
cells, while none was detected in the scRNA-seq data.

Multimodal CosMx WTX Data Integration
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The whole-transcriptome data of 
CosMx can be integrated to other 
histological and pathological data 
from the same tissue, such as:
• H&E histopathology images
• Multiplexed IF images
• Spatial proteomics
• Spatial 3D genomics 
• …

ChromiumCosMx ChromiumCosMx

Detection of gene transcripts Detection of unique genes

Performance metrics Chromium CosMx

Total number of genes 18,082 18,935

Input sample size 10,000 cells 103.63 mm2

Output number of cells 6,275 493,929

Median transcripts per cell 1,151 967

Median unique genes per cell 774 627

Genes above background N.A. 13,918

Genes with high dynamic range 3,349 5,896

Coverage of tissue composition Biased Unbiased

Performance metrics Chromium CosMx

Total number of genes 18,082 18,935

Input sample size 10,000 cells 69.17 mm2

Output number of cells 8,551 401,797

Median transcripts per cell 3,373 2,112

Median unique gene per cell 697 839

Genes above background N.A. 8,370

Average single-gene SNR N.A. 9.93

Detection of rare cell types Challenging Effective
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Transcript detection comparison Gene detection comparison

Detection of gene transcripts Detection of unique genes

Log10(Transcripts per cell) Log10(Unique genes per cell)
Log10(Transcripts per cell) Log10(Unique genes per cell)Log10(Transcripts per cell) Log10(Unique genes per cell)
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Cell Segmentation for Complex Neural Cell Morphologies & CosMx® Whole Transcriptomics Brain Imaging

Lidan Wu, Aster Wardhani, Joseph-Tin Phan, Ashely Heck, Kimberly Young, Yi Cui, 

Stefan-Laural Rogers, Kathy Ton, Joseph Beechem

Bruker Spatial Biology, Seattle, WA 98109, USA 

Abstract
Accurate cell segmentation is crucial for spatial omics, as incorrect cell boundaries can 

misassign transcripts or proteins, leading to skewed cellular profiles and flawed data 

interpretation. Brain tissue poses particular challenges due to its densely packed, 

irregularly shaped cells—many with star-like morphologies and long protrusions. Current 

machine-learning (ML) segmentation models often fail to capture these complex 

structures, as they are typically designed and trained on non-neuronal samples. 

We present a novel cell segmentation pipeline designed for complex brain tissue 

morphology. The key innovations are a new neural-network model trained specifically 

for brain tissue and a custom post-processing method designed to recover large, 

irregular cells and their elongated structures, which are often missed by existing 

models. In validation using CosMx ® data from FFPE human brain samples, we 

confirmed improved accuracy through both quantitative metrics and visual inspection. 

Methods

Nuclei stain

Cytoplasm 
/membrane 

stain

Nuclear 
labels

Nuc
Model

Combine via 
IoU & IoAnuc

Final Cell 
labels

Protrusion 
stain

Post-
processing 

Neuro 
Model

Soma 
labels

Post-
processing 

Soma w/ 
Protrusion

Nuclei 
only

Overview of cell segmentation pipeline

3-channel model for diverse neuro samples
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architecture) Model outputs

cell 
probability 

horizontal & vertical
gradients

Post-
processing 
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masks

Balanced training dataset from diverse sources

Round cells w/ 
limited glial cell. 

Astrocytes w/ 
fluorescent GFAP

Mixture of neurons & glial cells at 
balanced composition

Large range of cell 
size & density

Diverse morphology from various parts of human and mouse brains are included in training. 
• Roundish cells: main cell bodies stained with generic cytoplasm stain and/or nuclear stain. 
• Single-positive nuclei with no obvious cytoplasm stain, very packed in cerebrum region. 
• Star-like cells with protrusions: astrocytes, microglia, oligodendrocytes. 
• Giant teardrop-like neurons +/- long protrusions: MAP2-positive neurons

140 total neuronal images 
(128 3-channel + 12 single-stained)

16.5K total cells 
(16.3K 3-channel + 256 single-stained)

Carefully chosen ROIs for balanced representations of diverse morphological distinct cell types. 

• GFAP-only, astrocyte 
cell culture

• Neuronal & glial-
specific stained brain

• Generic stained brain

Gradient tracking suffers for cells with elongated shape or of high texture

Results
Balanced representations increases model generalizability

Test results
GFAP-only

Generic-
stained brain

Specific 
stained brain

Cerebellum 

Input

Manual curated 
cell labels 

Cyto2 
(pre-trained)

Model #1 
(random brain 

ROIs)

Model #2 
(chosen brain 

ROIs w/ 
comparable cell 
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Model #3 (w/ 
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matched 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

New neuro cell segmentation improves quality of spatial transcriptomics data

3-channel Input

Model 
prediction

Predicted cell probability Predicted gradient flows Magnitude of flows 

Default post-processing method uses gradient tracking to convert model outputs to cell marks. This is done by first thresholding on the
predicted cell probability to isolate the foreground and then tracking the direction of the predicted flows given its magnitude in both horizontal
and vertical directions to locate the basin point as cell centroid and connect pixels along the flow path as part of the corresponding cell.

Cells of elongated shape may have the centroid sitting outside of cell borders and thus result in negative divergence of flows at the nearest
boundary pixel during gradient tracking, splitting cell marks into small pieces. Similarly, cells of high texture or large size tend to have less
smooth flows predicted by a given cell segmentation model and thus are more susceptible to flow divergence and mask splitting. This issue
can not be resolved by changing different thresholds on cell probability and/or flows.

High recovery post-processing for mask generation
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16S rRNA / Histone & DAPI / GFAP

% Extracellular 
Transcripts

Cell Number
Average Cell 

Volume (µm3)
Transcript per 

Cell (Avg | Q90)
Intracellular Tx 

Density (per µm3)
SNR (Average 

per Gene)

New Neuro Cell Seg 65 18,012 975.086 2460 4828 2.523 4.025

Original Cell Seg 62 23,361 978.515 2101 4090 2.148 3.543

Morphological stain
16S rRNA / Histone & DAPI / GFAP

New Neuro Cell Labels
(new 3-channel model + new post-

processing)

Original Neuro Cell Labels 
(old model + default mask + 

protrusion auto-thresholding)

Cell Borders Overlay on 
RNA Spot Density Heatmap 

(New / Original)

Leiden clusters on RNA UMAP
Original Cell Seg New Neuro Cell Seg

New neuro cell segmentation pipeline significantly increased the total transcripts per cell by 17% with minimal change
in cell volume in a CosMx ® WTX data of FFPE human brain sample. It also reduced total cell number by 23% without
obvious increase in extracellular transcript number. Majority cells being removed by new segmentation pipeline has
limited evidence in either morphological staining or spot density enrichment, indicating improved boundary accuracy
and fewer false positives. Further cell typing analysis identified those “ghost” cells as Oligodendrocyte_C_1 & 2
expressing no obvious marker genes despite comparable total counts per cell with that of other cell clusters.

For Research Use Only. Not for use in diagnostic procedures

New neuro cell segmentation pipeline with 

superior performance:

▪ Three color channels for better differentiation 

between closely positioned cells.

▪ Neuro-specific cell segmentation model with 

improved generalizability across diverse neuronal 

samples.  

▪ High-recovery mask generation for large or elongated 

cells and better capture of long protrusions. 

▪ Improved quality of spatial transcriptomics data
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Solid lines: 
Diversified Test Set w/ 
Mixed Cell Types

Dashed lines: 
Cerebellum & Generic-
stained Test Set

Model #3 exhibited 
superior capacity in 

picking up fine 
protrusions while 
maintaining great 

performance across 
diverse datasets.  
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Scan here to 
download or learn more

23.5%↑ in 
transcripts/cell

18.9%↑ in 
transcripts/cell

Neurons: 
TUBB4A, 
MT3, NRGN, 
DYNLL1, 
MIF, CALM1, 
COX4I1, 
COX6A1 

New Seg Original
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InSituDiff: Disease-driven changes in cellular 
neighborhoods as a window into spatial transcriptomics

Computational details

▪ We limit memory and compute with subsetting
and on-the-fly calculations

▪ InSituDiff processed a 600k cell, 18k gene 
dataset in 11 minutes.

Patrick Danaher1, Caleb Stokes2,3, Dan McGuire1, 

Lidan Wu1, Parambir Dulai4, Joseph M. Beechem1 

1. Bruker Spatial Biology, 2.University of Washington 

department of pediatrics, 3. Seattle Children’s 

hospital division of pediatric infectious disease,        

4. Division of Gastroenterology and Hepatology, 

Northwestern University

For Research Use Only. Not for use in diagnostic procedures.

Abstract

Perturbation analysis of mouse brains 
after infection with West Nile Virus

Results from the CosMx
whole transcriptome panel

The fundamental problem in spatial transcriptomics: 

how do you find all the interesting biology hidden in 

your data?

InSituDiff pursues one solution: look for perturbed 

cellular neighborhoods in disease vs. control regions.

We transform the gene expression matrix into a 

“perturbation matrix”.

Applied to this perturbation matrix, the usual arsenal 

of single cell analyses produces very revealing results.

Study: mouse brains, controls and 11 and 21 days

post-infection with West Nile Virus, profiled with

CosMx® Mouse Neuroscience Panel (1,000-plex).

Study: colon samples, one control and 3 IBD, profiled with the 

CosMx Human Whole Transcriptome Panel (18,933 genes) 

Algorithm: calculating perturbations 
in cellular neighborhoods

Match each cellular 

neighborhood in disease 

to the most similar 

control neighborhood. 

Record the expression 

profiles of all “cellular 

neighborhoods.

Genes
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Perturbations from controls
Record the differences 

from disease 

neighborhoods and 

matching control 

neighborhoods. This is 

the “perturbation matrix.”

InSituDiff Application 1:  identify highly-perturbed genes

InSituDiff Application 2: spatial correlation analysis of 
gene perturbations

Genes’ total perturbations Role of individual cell types in 
genes’ total perturbations

Network of spatial correlations 
in gene perturbations

One module of genes with spatially-
correlated perturbations

InSituDiff Application 3: cluster cellular neighborhoods 
to discover spatial domains defined by perturbations

Four spatial domains derived 
from perturbation scores

Mean gene perturbation 
values within domains

478 highly perturbed 

genes clustered into 

22 modules

One highly perturbed gene: OR10H5: sensing of 

metabolites & inflammatory signals

Spatial clustering identifies 

6 perturbed spatial domains

Mean perturbations 

in spatial domains

Conclusion

We propose InSituDiff as a flexible and 

powerful tool for exploring spatial 

transcriptomics data.

Perturbation scores 

from one gene

Scan here to read about InSituDiff on 
the CosMx Analysis Scratch Space

Scan here to Scan here to download or 
learn more



Background

As the primary immune cells of the brain, 
microglia are extremely sensitive to 
changes in their environment, engaging in 
intricate communication networks that 
involve the exchange of small molecular 
signals that allow them to adapt their 
behavior based on a variety of stimuli in 
their vicinity. 

These shifts in functional behavior, from 
surveillance to injury response, may be 
associated with morphological changes, 
which may serve as markers of their 
functional state. 

To our knowledge, few have combined 
spatial proteomics and traditional 
immunohistochemistry (IHC) to map 
microglial form and function in situ 
following an ischemic stroke.

K. Young1, A. Heck1, A. Rosenbloom1, A. Wardhani1, M. Walter1, R. Liu1, L. Wu1, C. Williams1, M. Hoang1, J. Beechem1, K. P. Doyle2, H. W. Morrison3 

 

Connecting Form and Function: Mapping Microglial Spatial Biology 
in a Mouse Model of Acute and Chronic Ischemic Stroke

Objective
To use cutting-edge spatial biology tools 
to track microglial functional dynamics 
after ischemic stroke combined with a 
morphometric analysis at acute and 
chronic timepoints.

Methods
Following MCAO surgery, stroke severity was 
confirmed on a Bruker Biospec MRI scanner and 
comparable brains were selected for spatial 
proteomics profiling on the CosMx® Spatial 
Molecular Imager platform.

2. University of Arizona College of Medicine 
3. University of Arizona College of Nursing

1. Bruker Spatial Biology, Seattle, WA

CosMx SMI Protein Assay Workflow

50 µm
Standard IHC 

Workflow: 
IBA1

Bruker Biospec 
70/20 7.0T MRI 

scanner 

CosMx SMI from 
Nanostring, a Bruker 

Company

Middle Cerebral 
Artery Occlusion 

(MCAO) 

Utilizing Bruker Technology
A Bruker Biospec 70/20 7.0T MRI scanner with the 
ParaVision-360.2.0 software (Bruker Biospin, 
Billerica, MA) was used to acquire 3D T2-weighted 
RARE images, validating stroke severity.

Proteomic data were collected within ROIs across 
timepoints using CosMx SMI to detect up to 68 
proteins at the single cell level. The proteomic 
assay detects proteins with oligonucleotide 
barcode-conjugated antibodies; each analyte relies 
on barcode readout on the SMI instrument via 
several rounds of reporter binding and 
fluorescence imaging.
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Improved Sensitivity With Next-Gen Cell Segmentation
• While this preliminary study uses only IBA1 for microglia 

segmentation, implementing CosMx’s improved cell 
segmentation would increase sensitivity by better capturing 
proteins expressed on fine microglial processes

 

Composition of 4wk Glial Scar and Other Regions
• The high-plexity of proteins captured in this study allows for 

a more in-depth investigation into additional players such 
as foam cells that exist within the 4wk glial scar, as well as 
considering changes in the hippocampus

Future Directions
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Infarct/Scar

2
Peri-infarct

13 11 16

Composite Composite

3
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C. Among other proteins, this module includes the Notch 
pathway protein Hes5 (involved in cell differentiation), lysosomal 
enzyme Cathepsin B, and microglial/macrophage markers (IBA1, 
CD11b, Itgax) indicative of increased phagocytosis. Notably, the 
co-expression of each protein in the module changes with 
increasing distance from the infarct core. Hes5 intensity drops off 
at the peri-infarct region, and the number of Itgax+ and DAP12+ 
cells decreases. 

At the proximal region, primarily IBA1 and CD11b remain, and 
DAP12 intensity sharply decreases. The fact that TMEM119, a 
microglia-specific protein, was not identified in this module may 
have implications for the identity of these cells. Alternatively, as 
the function of TMEM119 remains unknown, its absence from the 
module could inform investigations into its function.
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Microglia Morphometrics10 µm
CosMx Workflow: 
TMEM119, CD11b, 
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PCA Analysis of CosMx Microglia Proteins Identifies Region and Time-Point Variables

Connecting Microglia Form & Function
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(markers used for morphometrics highlighted)
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Individual slides’ UMAPs reveal 
variability in one of the 4wk brains (S3)

Conclusions
• Skeleton analysis of 10 µm multi-protein CosMx images correlates well with 50 

µm IBA1 images. An initial analysis using only a subset of the 68 proteins 
detected reveals two distinct PCs: one that captures timepoint and another that 
captures brain region. PC1 correlates to microglia morphometrics.

• Combined UMAPs demonstrate minimal variability of replicates, and 
unsupervised leiden clustering reveals subtly distinct cell types and cell states 
across the contralateral cortex at each timepoint.

• InSituCor identifies spatially correlated proteins at the single-cell level, revealing a 
shift in the coexpression of IBA1, CD11b, Cathepsin B, Itgax, DAP12, and Hes5 
with increasing distance from the infarct/scar at the 2- and 4-wk timepoints.

High-Plexity Reveals Microglial Morphology at 5 µm z-stacks 

Figure 1. Multiple 
microglia/macrophage 
markers were included to 
create the composites 
used for skeleton analysis 
on CosMx images, 
capturing as much of the 
cell morphology as 
possible. Markers include 
both homeostatic and 
functional proteins.

24Hr

2wk

4wk

Figure 2. While spatial 
distribution of proteins like 
TMEM119 and P2RY12 
remain relatively consistent 
across timepoints, intensity 
of proteins like DAP12 and 
CD68 becomes more 
localized to the infarct and 
scar regions at the 2wk and 
4wk timepoints 

Microglia Morphometrics and Function 

Figure 5. InSituCor is an analysis toolkit that identifies 
spatially  correlated proteins while considering cell 
type, signal strength, and background intensity. 
A. Here, a module is highlighted in a 2wk post-stroke 
brain. Not all Leiden clusters are equally involved; 
cells in clusters 11 and 16 are equally likely to co-
express the proteins identified in the module, while 
cells in cluster 13 are involved to a lesser extent. 
B. An environment expression heatmap shows where 
protein correlation is strongest (yellow/bright) and 
weakest (purple/dark) in each of the sections.

InSituCor Identifies Spatially Correlated Proteins
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Skeleton Analysis and Correlation Between 10 µm CosMx and 50 µm Confocal Images

NeuN   GFAP   IBA1

NeuN   GFAP   IBA1

24Hr

2Wk

4Wk

Figure 3. MRI images (left) of stroke injury after MCAO at 24hr, 2 & 4 weeks, confocal and NanoString 
images (middle) acquired in brain regions spatiotemporally related to stroke injury, and summary data 
of microglia morphology from confocal and NanoString Images. Animal n = 3; imaging sampling 
2/region; data averaged per region for ANOVA analysis with post-hoc reported in figure: *p < 0.05,   
**p < 0.01, ***p < 0.001. Relationship between confocal and NanoString analysis carried out using 
Pearson’s r.

Figure 4. Intensities of 22/68 microglia 
proteins on the CosMx platform was 
carried out for PCA analysis. 

A. Data are identified spatiotemporally 
in the PCA plot with variables 
dominate in PC1 vs. PC2.

B. Summary data (Boxplot, mean) of 
PC1 and PC2 illustrate region (PC1) 
and time (PC2) nature of variables.

C. PC1, but not PC2, correlates 
strongly with microglia 
morphometrics. 
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D. Thalamus
2wks

D. In the 2wk thalamus, Itgax expression appears largely 
restricted to the infarct core, with few Itgax+ cells visible in the 
peri-infarct region. 

In addition, while cortical expression of DAP12 dropped off 
sharply at the proximal region, in the thalamus the number of 
DAP12+ cells appears similar between the peri-infarct and 
proximal regions, indicating that there may be a different 
cellular response in the cortex vs the thalamus.

Lastly, with increasing distance from the infarct core, the 
presence of TMEM119 increases more dramatically in the 
thalamus compared to the cortex. The difference in TMEM119 
intensity across these two brain regions may have implications 
for the cell types involved; for example, the outer cortex 
regions may be more accessible to infiltrating macrophages 
(TMEM119-), whereas the degree of infiltration may be less 
significant in deeper midbrain regions like the thalamus.
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