

BRIGHAM AND WOMEN'S HOSPITAL San Antonio Breast Cancer Symposium® - December 10-14, 2019

Using multi-omic profiling to unravel the complexity of triple-negative breast cancer

Shom Goel^{1,2}, Heather Ann Brauer³, Yuqi Ren³, Kara Gorman³, Wafa Osmani², Jessica Pittenger², Chelsea Andrews², Edward Richardson, III⁴, Elizabeth Mittendorf^{2,4}, Eric Winer², Stuart Schnitt², Sara Tolaney²

Peter MacCallum Cancer Centre, Melbourne; ²Dana-Farber Cancer Institute, Boston; ³NanoString Technologies, Inc, Seattle; ⁴Brigham and Women's Hospital, Boston

SUSAN F. SMITH CENTER FOR WOMEN'S CANCERS

Background

- · Triple-negative breast cancer (TNBC) is a heterogeneous disease.
- · Studies have classified TNBCs into different subgroups based on:
- · mutational profile
- · patterns of gene expression
- · expression of protein markers
- · degree of immune cell infiltration
- Although TNBC heterogeneity has been characterized at each of these levels individually, how variation at one level is associated with differences at other levels is poorly understood.
- In this study, we performed "multi-omic" profiling on a cohort of TNBCs in order to determine how various DNA, RNA, protein, and immunologic parameters are correlated.

Methods

Formalin-fixed, paraffin embedded TNBC samples* (n=95)

Breast pathologists scored sTILs (according to guidelines from the International TILs Working Group) and IHC staining (intensity and % of cells stained). Antibodies were: PD-L1 clone 405.9A11 (Cell Signaling Technology): AR Clone AR441 (Dako); RB clone G3-245 (BD Biosciences).

Breast Cancer 360 (BC360) panel (Nanostring) includes algorithms to sore various signatures (e.g. TNBC subtype, immune signatures, differentiation, etc).

DNA sequencing results were available from 68/95 (72%) of cases.

H and E section Stromal tumor-infiltrating lymphocytes (sTILs, %)

Immunohistochemistry
Androgen receptor (AR)
Retinoblastoma protein (RB)
Programmed death-ligand 1 (PD-L1)

RNA extraction from tumor-rich regions

Expression of 776 genes using nCounter "BC360" assay

DNA extraction

"Oncopanel" assay: in-house sequencing panel for coding regions of ~500 genes

Samples were acquired during pre-screening for an ongoing clinical trial (NCT03130439) partially funded by Eli Lilly. All patients provided consent for the profiling in this study.

Characteristics of study samples

Biomarker protein-RNA correlations

The protein expression of AR, RB1, and PD-L1 was well correlated with expression of the genes encoding them.

Analysis by AR status

- 36% of tumors stained AR-positive (>1% of tumor cells).
 65% of these stained RB-positive (>50% tumor cells).
- 75% of AR-positive tumors were RB1 wild-type (n=27).
- Only 4 tumors (4% of total) classified as "LAR" by gene expression. Three of these stained AR+.

Analysis by RB status

- 55% of tumors stained RB-positive (>50% of tumor cells). 42% of these were AR+ by IHC. There was no association between RB status by IHC and TNBC subtype.
- 30% of tumors had an RB1 alteration, 48% of these stained positive for RB (>50% tumor cells).
- 70% of tumors were RB1 wild-type, 60% of these stained positive for RB (>50% of tumor cells).

Analysis by PD-L1 status

- There was a significant correlation between stromal TIL infiltration and fraction of PD-L1+ immune cells in tumors (r=0.582, p<0.001).
- PD-L1 status (<1 vs >1% immune cells stained did not correlate with TNBC subtype (by gene expression).

PD-L1+ (>1% of immune cells) tumors show upregulation of multiple immune signatures/genes

Analysis by genomic alterations

- PI3K pathway altered tumors (PIK3CA, PTEN, AKT1, AKT2, AKT3) showed significantly higher expression of AR (p<0.001) and FOXA1 (p=0.004*).
- BRCA1/BRCA2 mutant tumors (somatic) showed a significantly higher "tumor inflammation signature" (TIS) score by gene expression (p=0.014*).
- RB1 altered tumors showed higher proliferation indices by gene expression (p=0.068*). (* unadjusted p values)

Summary

- Neither RB nor AR status by IHC was associated with TIL infiltrate or PD-L1 status.
- RB status by IHC did not associate with particular TNBC subtypes by gene expression.
- RB IHC is a poor surrogate for RB1 alteration status.
- AR-positive tumors were no more likely to be RB-positive by IHC or RB1 wild-type.