Building a spatial single-cell multi-omics atlas and cellular interactome for skin cancer

LF Grice^{1,2}, X Jin¹, M Tran¹, O Mulay¹, E Killingbeck³, M Gregory³, SM Teoh¹, K Devitt⁴, A Kulasinghe⁴, M Leon, S Murphy, S Warren³, K Khosrotehrani⁴, M Stark⁴, I frazer⁴, Y Kim³, Q Nguyen^{1*}

³NanoString Technologies, Seattle WA 98109

¹Institute for Molecular Bioscience, The University of Queensland, Australia ²School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia ⁴ Diamantina Institute, The University of Queensland, Australia

Spatial atlas (Spatial Molecular Imager)

Keratinocytes (KC)

- Immune (I)
- Pilosebaceous (P)
- Fibroblasts (F)
- Endothelial (E)
- Melanocytes (M)

Conclusions

• We generated the single cell and spatial atlas of SCC, BCC, and melanoma cancers, with focus on SCC cancer and melanoma 28 SCC cell types were identified and validated by

- complementary methods
- · Cell-cell interactions specfic for cancer states were determined

Acknowledgements

We thanks the NanoString team for working on the SMI analysis