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Panel Design

Due to the coordinate nature of coexpression among genes 

within a pathway, a relatively small number of genes can 

capture the majority of the variability in a pathway’s gene 

expression19. The 13 canonical cancer pathways described in the 

nCounter PanCancer Pathways panel contain a large number of 

genes. However, with a principled approach to gene selection, 

expression information for only 700 genes is suffi  cient to capture 

~90% of the gene expression variability for all genes within the 

pathways (Figure 2).

In order to identify the maximally informative core set of genes 

that comprise the nCounter PanCancer Pathways Panel gene 

list, a variety of selection criteria were employed. We began 

by including 125 genes in which mutations are known to drive 

oncogenesis3. We further included 127 genes that appeared in 

three or more pathways and 50 genes that were consistently 

diff erentially expressed between tumor and healthy controls in 

The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/) 

datasets across a number of tissues. Finally, an analysis of the 

FIGURE 1: Pathways included in the nCounter® PanCancer Pathways Panel. 

Circles representing each of the 13 canonical pathways show the number of 

genes selected for the panel in relationship to the total number of known genes 

identifi ed for each pathway as identifi ed by KEGG. Lines have been drawn 

to show the relative overlap of genes that belong to multiple pathways, with 

thickness of line relating to number of shared genes.  For a list and description 

of the 13 canonical cancer pathways, visit: www.nanostring.com/pancancer

Introduction

All cancers must evolve a means of sustaining self-suffi  cient 

growth and evading apoptosis1,2. This process typically 

occurs via the accumulation of mutational events that confer 

a growth advantage through deregulation of the molecular 

pathways controlling cell growth and cell fate3. Mutations 

in over 100 genes are known to drive tumorgenesis and 

within any given tumor there are between 2–8 mutated 

“driver genes” modulating the activity of critical molecular 

pathways4. Studying the deregulation of molecular pathways 

impacted by mutational events as well as monitoring 

expression of these driver genes is critical to gaining a 

complete understanding of the biology underlying cancer.

Molecular pathways are an attractive organizing principle for 

analysis of gene expression data as they provide a means to 

combine the noisy information in individual genes into stable 

and meaningful representations of fundamental biological 

processes5. Gene expression profi ling has long been used 

within the cancer fi eld to stratify cell populations and classify 

tumors6–8. This powerful ability is largely due to the fact that the 

gene expression state of a cell or tissue contains information 

about the biological processes occurring within a sample9. 

Pathway-based analyses provide a holistic view of the changes 

to fundamental biological processes, allowing for deregulation of 

regulatory pathways to be linked back to “driver gene” status.

In their seminal paper, Vogelstein et al.,argue that understanding 

the deregulation of pathways is integral to understanding 

the biology of any cancer. A growing number of studies 

have demonstrated that pathway based analysis of gene 

expression provides a framework for understanding the discrete 

diff erences between the biology of diff erent cancers and cancer 

subtypes10–15. To better understand the intricate network of 

pathways and interactions, NanoString has taken a biology-

guided, data-driven approach to identify over 700 essential 

genes that capture the activity of 13 canonical cancer pathways 

and associated driver genes (Figure 1). Each pathway was 

mapped to publicly available data-sources (KEGG 

http://www.genome.jp/kegg/, Reactome http://www.reactome.org/,

GO http://www.geneontology.org/)16–19 as described below 

(see Panel Design) in order to create a tool designed 

to enable a pathway-based approach to exploring the 

molecular mechanisms of cancer and cancer subtyping.
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cancer literature identifi ed another 75 genes as key members 

of the cancer landscape. Together, these methods added 297 

pathway genes central to the understanding of cancer biology to 

our panel.

Additional cancer pathway-associated genes were identifi ed 

using a data-driven statistical approach designed to capture 

genes that explained the maximal amount of expression 

variability for each pathway. That is, we sought genes that were 

not just highly variable in their own expression, but whose 

expression state carried information about the expression level 

of other genes. After this data-driven selection, the resulting 

genes were cross-referenced against our analysis of the cancer 

literature before inclusion in the fi nal nCounter PanCancer 

Pathways Panel gene list.

An annotated list of all genes in the nCounter PanCancer 

Pathways panel is available at www.nanostring.com. This list 

contains information for each gene in the panel including its 

classifi cation, i.e., driver gene, pathway member or housekeeping 

gene, accession number, alternate names and probe target 

sequence. Additionally, the gene list contains information about 

each pathway along with database source information from 

KEGG, Reactome, and GO. 

Identifying Maximally Informative Pathway Genes

For each pathway and each TCGA dataset, we calculated a 

stable estimate of the pathway genes’ covariance matrix using 

the graphical lasso20. Given a set of selected pathway genes, 

this covariance matrix allowed us to measure the proportion of 

total variability in the unselected pathway genes that could be 

captured by the selected genes. For each pathway, we initialized 

our selected gene set as the intersection of the pathway’s genes 

and the 297 genes already included in our list. We next selected 

the gene that, in combination with the already selected genes, 

predicted the maximum amount of variance of the unselected 

genes across all the TCGA datasets. This process was iterated 

until the selected genes captured ~90% of the variance of all 

genes in the pathway (Figure 2).

Our examination of the TCGA dataset also allowed for 

identifi cation of genes with consistently low variance across 

many cancers. A subset of these genes was selected as 

“housekeepers” intended to aid in data normalization. These 

40 genes were also selected based on their ability to provide 

coverage of the wide range of expression levels typically 

observed in experimental datasets. 

Pathway-based Analyses of Gene Expression Data

The current understanding of cancer pathway architecture 

and the state of statistical methodologies for pathway-based 

analysis have progressed to the point where a pathway-based 

analysis can provide an exceptionally informative fi rst look at 

a gene expression dataset. In order to demonstrate the power 

of pathway-based analysis, we examined a subset of publicly 

available gene expression information from 823 breast cancers 

and 105 normal breast samples available at TCGA. Breast cancers 

are known to cluster into four subtypes: Luminal A, Luminal B, 

HER2-enriched, and Basal-like6,9. We used the PAM50 algorithm20

to estimate the “intrinsic subtype” of every sample in the dataset.

In order to gain initial insight into the biology of these breast 

cancer samples, we transformed our measurements of gene 

expression into measurements of pathway deregulation. 

A number of methods exist for using gene expression to 

score pathway activity or deregulation12,21,22. We found the 

Pathifi er algorithm12 extracted the greatest clarity from this 

dataset. Pathifi er scores pathway deregulation by fi tting a 

curve that captures the maximal variability of pathway gene 

expression and then projecting every observation onto that 

curve. An observation’s deregulation score is its distance 

along the curve from the average normal sample.

In Figure 3, we display a heatmap of pathway deregulation 

scores in the breast cancer data, highlighting the 

FIGURE 2: Proportion of total variance in pathways captured by the selected 

pathway genes. Individual black lines denote the proportion of pathway gene 

variance captured by the selected gene set as gene number increases. Each line 

represents a pathway, and each line’s upper-right terminus corresponds to the 

number of genes ultimately selected for inclusion in the gene list for a given pathway. 

The thick red line denotes the proportion of pathway gene variance captured on 

average across all pathways and highlights that 60% of genes in a pathway are 

suffi  cient to capture 90% of the gene expression variance within a pathway.
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tremendous clarity that examination of gene expression 

data at a pathway level affords. We immediately gain insight 

into the intrinsic biology of the four breast cancer subtypes. 

For example, one cluster of Luminal A samples has very low 

deregulation of all pathways, behaving almost like normal 

tissue. Other clusters of Luminal A and B samples exhibit 

much higher pathway deregulation in a set of eight pathways 

(Notch, STAT, TGF-β, Transcriptional Regulation, Wnt, 

Hedgehog, RAS and MAPK). These observations suggest 

that the luminal breast cancer phenotype may result from 

multiple sources of pathway deregulation. Basal-like and 

HER2-enriched samples show very high deregulation of an 

almost entirely different set of pathways (Apoptosis, DNA 

Damage Control, Chromatin Modification, PI3K and Cell 

Cycle), suggesting these tumors rely on a fundamentally 

different mechanism to gain a selective advantage, which 

is consistent with the observations made by others9. The 

boxplots of pathway deregulation scores in Figure 4 make 

these observations clear. Interestingly, our analysis shows 

that both cell fate and cell survival pathways are deregulated 

within the cancer samples analyzed. Two pathways, STAT 

and TGF-β, are deregulated in both Basal-like tumors and 

the non-normal-like Luminal tumors. This pathway-based 

analytical framework provides a clear means of visualizing 

the need for loss of regulatory control in both key cellular 

processes in order to support tumor proliferation. Figure 

5 examines the deregulation scores of the five cell fate 

pathways. Some pathways appear to behave in concert 

having highly correlated deregulation scores, such as the 

Wnt and Hedgehog pathways (Figure 5A). In contrast, 

FIGURE 3: Pathway deregulation scores in breast cancer samples. Pathifi er was 

used to calculate deregulation scores for each pathway (x-axis) in each sample 

(y-axis). Samples are colored according to intrinsic subtype, with Basal-like (red), 

HER2-enriched (pink), Luminal A (dark blue), Luminal B (light blue), and normal 

samples (green). Deregulation scores were generated relative to expression in 

normal breast tissue and are shown on a continuum from no deregulation (red) to 

highly deregulated (yellow).

FIGURE 4: Boxplots of pathway deregulation scores by intrinsic subtype. The 

distribution of Pathifi er deregulation scores of each pathway is plotted for each 

intrinsic subtype. Samples are colored according to intrinsic subtype, with Basal-

like (red), HER2-enriched (pink), Luminal A (dark blue), Luminal B (light blue), and 

normal samples (green). The top and bottom of the box delineate the upper and 

lower quartiles, with the thick line within each box representative of the median. 

Whiskers extend to capture all data within two standard deviations of the mean.
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while both the Wnt and Chromatin modification pathways 

are deregulated in cancer, the extent of their deregulation 

appears to be negatively correlated (Figure 5B). A 

comparison of activity for the Notch and Wnt pathways in 

these samples highlight a third interesting mode of co-

regulation: while all Luminal samples exhibit similar levels 

of Wnt deregulation, deregulation of the Notch pathway 

separates Luminal samples into a highly deregulated 

cluster and a minimally deregulated cluster (Figure 5C). 

Finally, Figure 5D shows consistent levels of deregulation 

of the Transcriptional Regulation pathway across most 

samples, with a small subset of samples of all subtypes 

experiencing extreme deregulation relative to normal. 

Data Analysis

Pathways also provide an excellent lens through which 

to examine the differential regulation of genes between 

tumors and controls. This type of analysis can be done at the 

pathway level with gene set enrichment analysis (GSEA)23, 

while tools like Pathview24 provide for visualization of 

differential expression of individual genes in the context of 

KEGG pathways. A Pathview plot of differential expression 

between Basal-like and normal samples for the Cell Cycle 

pathway highlights genes that are up- and down-regulated 

in these tumors (Figure 6). Overall, there is broad up-

regulation of many cell cycle genes in Basal-like samples 

consistent with the dysregulation of this pathway in these 

samples. Interestingly, a Pathview plot of differential 

expression between Basal-like and normal samples in the 

FIGURE 5: Deregulation scores of selected cell fate 

pathways in TCGA breast cancer data. Pathifi er-

derived deregulation scores from fi ve pathways 

related to cell fate were plotted against each 

other to highlight patterns of coexpression within 

instrinsic subtypes. Samples are colored according 

to intrinsic subtype: Basal-like (red), HER2-enriched 

(pink), Luminal A (dark blue), Luminal B (light 

blue), and normal (green). (A) Hedgehog and Wnt 

pathway regulation was consistent for all breast 

cancer subtypes. (B) Chromatin Modifi cation and 

Wnt pathway deregulation were discordant in the 

majority of samples from each intrinsic subtype. 

(C) Notch and Wnt pathway regulation were 

consistent except for a subgroup of Luminal tumors. 

(D) Transcriptional Regulation and Wnt pathway 

regulation were consistent in Basal and HER2-

enriched and discordant in Luminal A and B tumors.
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Apoptosis pathway (Figure 7) highlights that a relatively 

small number of genes likely contribute to the significant 

dysregulation identified by Pathifier analysis in Figures 3–5.

Conclusion

Gene expression signatures can be used to better understand 

basic cancer biology and to identify patterns of pathway 

deregulation in cancers. In this paper, we have highlighted 

the ability of the genes within the nCounter PanCancer 

Pathways panel to provide a valuable lens through which 

to examine cancer biology. Clustering tumors based on 

pathway signatures may aid in defining prognosis in patient 

populations based on the intrinsic biology and outcome of 

specific cancers1, as well as help predict the sensitivity of 

these tumors to therapeutic agents25–27. Profiling of the driver 

genes included in our panel provides valuable information 

for those interested in exploring the relationship between 

driver genes and their impact on pathway activity. As 

FIGURE 6: Diff erential expression in Basal-like tumors relative to normal 

tissue within the cell cycle pathway. Diff erential expression results comparing 

expression of individual cell cycle genes between normal and Basal-like samples 

are mapped to a KEGG representation of the pathway using Pathview. Proteins 

whose corresponding genes are up-regulated in Basal-like samples are colored 

red; proteins with down-regulated genes are colored green. Data on KEGG graph 

rendered by Pathview, copyright © 1995-2015 Kanehisa Laboratories.
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such, tools like the nCounter PanCancer Pathways Panel, 

that provide a way to look at both pathway genes and 

driver genes, enable analysis of cancer for the translational 

research community and permit the further development 

of molecular diagnostics and targeted therapeutics.

FIGURE 7: Diff erential expression in Basal-like tumors relative to normal 

tissue within the apoptosis pathway. Diff erential expression results comparing 

expression of individual apoptosis genes between normal and Basal-like samples 

are mapped to a KEGG representation of the pathway using Pathview. Proteins 

whose corresponding genes are up-regulated in Basal-like samples are colored 

red; proteins with down-regulated genes are colored green. Data on KEGG graph 

rendered by Pathview, copyright © 1995-2015 Kanehisa Laboratories.
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