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Intellectual Property Rights

This nSolver™ Analysis Software user manual and its contents are the property of NanoString
Technologies, Inc. (“NanoString”), and is intended for the use of NanoString customers solely
in connection with their operation of the nCounter® Analysis System. The nCounter Analysis
System (including both its software and hardware components) and this User Manual and
any other documentation provided to you by NanoString in connection therewith are subject
to patents, copyright, trade secret rights, and other intellectual property rights owned by or
licensed to NanoString. No part of the software or hardware may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into other languages without the prior
written consent of NanoString. For a list of patents, see
www.nanostring.com/company/patents.

Limited License

Subject to the terms and conditions of sale of the nCounter Analysis System, NanoString
grants you a limited, non-exclusive, non-transferable, non- sublicensable, research use only
license to use this proprietary nSolver software with the nCounter Analysis System only in
accordance with this manual, the manual for the nCounter Analysis System, and other
written instructions provided by NanoString. Except as expressly set forth in the terms and
conditions, no right or license, whether express, implied, or statutory, is granted by
NanoString under any intellectual property right owned by or licensed to NanoString by virtue
of the supply of this software or the proprietary nCounter Analysis System. Without limiting
the foregoing, no right or license, whether express, implied, or statutory, is granted by
NanoString to use the nSolver Analysis Software or nCounter Analysis System with any third-
party product not supplied or licensed to you by NanoString, or recommended for use by
NanoString in a manual or other written instruction provided by NanoString.

Trademarks

NanoString Technologies, NanoString, the NanoString logo, nCounter, nSolver, PlexSet and
Plex?are registered trademarks or trademarks of NanoString Technologies, Inc., in the United
States and/or other countries. All other trademarks and/or service marks not owned by
NanoString that appear in this manual are the property of their respective owners.

Copyright
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Introduction

Advanced Analysis 2.0 Basics

NanoString Technologies’ nCounter assays are designed to provide a single-tube, ultra-sensitive,
reproducible, and highly-multiplexed method for detecting nucleic acid targets across all levels of biological
expression. These assays provide direct detection of targets using molecular barcodes, most without the
necessity of reverse transcription or amplification. nCounter assays are
processed on the fully-automated Prep Station followed by data collection
on a Digital Analyzer; alternatively, processing and data collection may be
accomplished together on the SPRINT instrument. The nSolver 4.0
Software Analysis System is provided to organize, view, and prepare your
data for statistical interpretation.

Changes from Advanced
Analysis 1.1 to 2.0

Advanced Analysis 2.0 is
keeping pace with the
rapidly expanding
nCounter technology. In
this version, data analysis
becomes  more  data-
focused and less analyte-
restricted. Single
Nucleotide Variance (SNV)
analysis is supported, as is
Fusion data analysis.

Advanced Analysis 2.0 is conveniently provided as a link from the nSolver
dashboard. It draws from powerful academic open-source analysis tools,
provides a simple interface to guide you through analysis, and displays the
results in an interactive HTML document. Each Advanced Analysis is
performed using R, a powerful statistical software program. Familiarity
with R is not required as users only need to interact with a simple wizard
within nSolver 4.0.

The basic steps needed to prepare your data in nSolver 4.0 are covered in
this manual (see the nSolver 4.0 Data Preparation section of this manual);
for more information on this process, see the nSolver 4.0 User Manual
(MAN-C0019).

nanoS_trinq
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Workflow

The following steps are common to all Advanced Analyses. The Advanced Analysis 2.0 Quick Start Guide in
the next section leads you through these basic steps.

For more details on a subject:
o Click the relevant step in the workflow below.
o Follow the hyperlinks in the Quick Start Guide.

Navigate the manual using the Table of Contents and relevant links.

o

Use nSolver to prepare your data. Select Advanced Analysis and
select your samples.

T il

Advanced Analysis

l

Specify sample identifiers, covariates, and annotations

Identifier Use in Analysis Annotation
[=- Group: Identifiers

E File Name
[#- Group: RCC annotations
[=]- Group: Experiment annotations

O Sample/Treatment
m Quick Analysis | / \ -3 Custom Analysis
Choose settings
Launch Analysis Data from
. "
nSolver to view progress e
General Options
— Normalization

Differential Expression

Summary / Save Settings

View QC results and data analysis in pathways of interest. For an overview of Quick Analysis plots
and Custom Analysis settings and plots, see the Quick Start Guide to Advanced Analysis section.

Diff Expr GSA PathView Analysis Parameters Share

Qverview Normalization

Figure 1: Advanced Analysis workflow
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Analyte Types

Advanced Analysis 2.0, in conjunction with nSolver 4.0, is designed to identify and support the analyte types
listed below, either alone or in any combination with each other. At this time, it is not designed to analyze
Plex?, PlexSet, CNV, or miRNA data. Most commercial NanoString panels are supported and this list may be
updated periodically. Contact support@nanostring.com with questions.

Messenger RNA (mRNA) — A mRNA molecule is a nucleic acid of 400-
10,000 bases which serves as a template for protein synthesis
(translation). mRNA panels are offered stand-alone, in Gene
Expression Panels, and with miRNA panels in the miRGE Assay kits.

Single Nucleotide Variance (SNV) — SNV refers to a single- or multi-
base change of up to 20 bases, which may exist as an insertion or
deletion, occurring in human genomic DNA. Vantage 3D DNA SNV
assays and the Vantage 3D DNA solid tumor panel are designed to
detect such sequence variations at specific positions at levels as low
as 5% allele frequency, thereby permitting the detection of somatic
mutations commonly seen in cancer.

Fusion — A gene fusion event, which results in a hybrid gene formed
from two previously distinct genes, happens through translocation,
chromosomal inversion or interstitial deletion. Fusions are often used
as prognostic markers in cancer diagnosis. NanoString offers direct
detection and counting of fusion events in two customizable Lung and
Leukemia gene fusion panels: the nCounter Vantage 3D Gene Fusion
panels and nCounter Gene fusion Panels (Ex US).

Protein — Proteins are translated from mRNA producing polypeptides
which perform the majority of active function within biological
systems. Vantage 3D Protein Panels target proteins and phospho-
proteins in a variety of cell types with the Immune Cell Profiling,
Immune Cell Signaling, and Solid Tumor Lysate and FFPE Panels.

Figure 2: Analyte Types that can be
analyzed using Advanced Analysis 2.0

nanoS_trinq
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Installation — nSolver 4.0, Advanced Analysis, & R

Requirements

Before running Advanced Analysis for the first time, ensure you have the following:

o Areliable internet connection which allows the download and installation of R libraries.

o Permissive firewall settings which allow R Script to write files to the home directory and that allow
access to the websites necessary for full functionality.

o Adequate time to allow R library downloads; this can take up to one hour. This requirement is for
first-time Advanced Analysis users, only.

o Practice data. NanoString strongly recommends practicing with sample data before using
Advanced Analysis on experimental/clinical data. Contact support@nanostring.com.

8 nanoStan
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Downloads

Advanced Analysis must be separately downloaded from the NanoString website and imported into the
nSolver 4.0 application. All Advanced analysis plugins distributed by NanoString depend on a specific R
version. Refer to the instruction manual of the specific Advanced Analysis plug-in you intend to use to
ensure you have the correct R version installed.

Instructions for the following software downloads are listed individually below: nSolver 4.0 Analysis
Software, R 3.3.2, and the Advanced Analysis 2.0 plugin.

Downloading nSolver 4.0 Analysis Software

If you have been using another version of nSolver 4.0 alpha, you will need to back up your database and
start with a clean or blank nSolver 4.0 database. Then, download and install the software.

Windows users:

o Navigate to c:\users\<username>\appdata\roaming\. Rename your nSolver4 folder to
nSolver4_old (or similar). You may need to show hidden files in order to see the appdata folder.

o Download and extract nSolver 4.0 from https://www.nanostring.com/products/analysis-
software/nsolver. Install the nSolver 4.0 application.

o When prompted to Install R, select Yes (see next section).

Mac users:

o From your home directory, make sure your hidden files are shown so you can see your nSolver4
folder. Rename it nSolver4_old (or similar).

o Download and extract nSolver 4.0 from https://www.nanostring.com/products/analysis-
software/nsolver. Install the nSolver 4.0 application.

Downloading R 3.3.2
R 3.3.2 is required for version 2.0 of the Advanced Analysis.

Windows users:

o You will be given the option to download R 3.3.2 when you install nSolver 4.0. If you did not, go to
https://cran.r-project.org/bin/windows/base/old/3.3.2/.

o If you've previously used a different version of R with Advanced Analysis and are updating to a new
version of R, you will need to change the R home path in nSolver. Select Analysis on the top toolbar
in nSolver and select Change R Home Path to the R 3.3.2 installation folder. Browse to the desired
directory and then select Ok.

nanoS_trinq
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Mac users:
o Install R separately. Go to https://cran.r-project.org/bin/macosx/old/R-3.3.2.pkg.
o Install XQuartz if you use Mac OS X 10.10 or higher. Go to https://www.xquartz.org/.
o You may need to download R Switch or a similar app to replace your current version of R with 3.3.2.
Alternatively, you may uninstall all other R versions.

When initiating an analysis in Advanced Analysis 2.0, nSolver 4.0 will check the version of R you have
installed and will issue a warning if it is a version incompatible with the program.

Downloading Advanced Analysis 2.0

You will find the most recent version of Advanced Analysis on
https://www.nanostring.com/products/analysis-software/nsolver. Save this to your computer as a
compressed .zip file. Do not extract the files before uploading them to nSolver.

In nSolver 4.0, select Analysis on the top toolbar (see Figure 3) and select Advanced Analysis Manager. Any
previously-installed versions of Advanced Analysis will be displayed. You can Remove them or simply Import
the current version. To import, select the Import New Advanced Analysis button and navigate to the .zip
file with the current Advanced Analysis version. This version will be added to the list within the Advanced
Analysis Manager. Select OK.

= nSolver Analysis Software 4.0
File RawData Study Experimen!port Preferences Help
RCC RLF  gfys 4 ReC S| Advanced Analysis Manager i)
e omem (L mls e
22c Raw Data | i Experiments . nCounter Advanced Analysis (version 1.1.4)
= g Studies

1 [ 3D test study
+ [ CancerImmune test
+ [ CNV Cancer Study
E% CNV new Cancer exp
" LeukFusv Study | |
+ [ miRNA test study ort
+1 [ New Study
3} [ RNA Protein Study Import New Advanced Analysis
=) [ SNV Study | e
=~ {ii SNV Exp NS_ST_DNA
ii§ Raw Data Ok m{
§i§ Normalized Data !
¥ Grouped Data !
ii¥ Ratio Data |

Figure 3: Importing Advanced Analysis or changing the analysis version
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Advanced Analysis 2.0 Quick Start Guide

The Advanced Analysis software plugin provides a number of R-based statistical tools with minimal input from the user.
Before beginning, ensure you have a reliable internet connection and security settings that allow pop-ups. First-time
Advanced Analysis users should ensure they allow adequate time to download required R libraries (this ~750 MB file may
take up to 1 hour to download). See the Installation section for download and installation instructions.

1. Experimental Design & nSolver 4.0 Data Preparation: Import your RCC and RLF files to nSolver 4.0 and
create an Experiment. For more on this topic, see the nSolver 4.0 User Manual (MAN-C0019) or the nSolver 4.0
Quick Start Guide (MAN-10049). Annotate samples, bearing in mind that the annotations will be used as variables
in Advanced Analysis. On the Experiments tab, highlight the raw or normalized data and select Advanced Analysis.

2. Creating an Advanced Analysis: Highlight the desired Advanced Analysis version (if more than one installed),

choose a Name for the analysis, and Browse for the location in which you would like it saved. Select an Identifier
that is unique to each sample (including SNV references) and one or more Covariate by checking appropriate boxes.
Use the drop-down menu in the Categorical Reference column to set a reference group as your baseline. Selecting
Quick Analysis will result in Overview, Normalization, and Differential Expression analyses for expression data and
variant call detection analyses for SNV and Fusion data. Custom may be selected when wanting to customize

analysis settings; these settings are addressed on pages 3-4 of this guide.

3. Viewing Analysis: Return to the nSolver 4.0 dashboard, select your experiment, and expand the navigation tree.
Highlight the Analysis data level and find your most recent analysis on the list. Highlight it and select Analysis Data.
This will open a window in your browser; you may need to Allow Blocked Content, depending on your internet
security settings. Libraries will load, status messages will dynamically appear in the browser, and ultimately, an
analysis screen will appear. See next page for descriptions of plots and options available.

Workflow

Use nSolver to prepare your data.

[avalyss W sove] >

Select Advanced Analysis and
select your samples.

LLLIN

Advanced Analysis

Specify sample identifiers, covariates, and annotations

! Quick Analysis
Launch Analysis Data from
nSolver to view progress

Analysis Data

v

Figure 4: Advanced Analysis workflow

\ “ Custom Analysis

Choose settings

nnnnnnnnnnnnn
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View QC results and data analysis in pathways of interest (this step continued from previous page).

Analysis Parameters

Overview Normalization Diff Expr GSA PathView
| I S N
Overview Differential Expression

Overview heatmaps display raw
data, allowing you to identify gene
sets with low counts and normalized
data clusters, which gives you a high-
level view of possible associations
within the data. Choose to view only
genes in particular gene sets along
the left side of the window and
choose to view Principal Component
analysis, study design, and QC data
along the top of the window.

This module
isolates the
effect of each _
variable on the
data. It displays
a linear
regression  of
the differential ;
gene expression

for each =
variable as a
volcano plot.

Normalization

This module allows you to normalize
mRNA and protein data separately. It uses
the geNorm algorithm for mRNA,
choosing only the most stable
housekeeping genes. Scatter plots display
the effect of the chosen normalization

settings on the data. Protein expression
data is also displayed.

Gene Set Analysis (GSA)

GSA overlays differential expression data
for sets of genes grouped by biological
function, considering the covariates and
relative to the baseline.

[ ]

Share

i

Share
This allows you to
access the
Advanced Analysis
report as a
sharable zip file.
Once it is saved to
your  computer,
extract
AdvAnalysisReport.zip
and view the
HTML report
outside of
nSolver. This
folder also
contains all the
analysis  output
images and data
files.

4

Analysis

Parameters

Under this tab, you
may view all analysis
settings and details.
You may also review
the reasons behind
any aborted
analyses.

PathView

SNV- & Fusion-specific plots
SNV and Fusion variant detection call
summaries can be found on these =
tabs. QC metrics specific to these
assays can also be found in this
section.

This module displays different KEGG pathways and
highlights pathway members most differentially
expressed in your data.

JECTTL
25 00 25

12
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Custom Advanced Analysis Settings & Plots

Analysis Type General Options
Here, you choose between Quick and Custom On this menu, choose the modules to run, confirm the experiment
Analysis. type, choose a probe annotation file, and determine any additional

image types (.pdf, .jpg, etc.) to create. Use the check box to omit

low count data and then Adjust Parameters to alter the thresholds
s s o (analyte-specific) that define low count.

expression testing using  single sample annotatior

Note ine reference for the selected sample annotation is General Options

spectied on the sample annotation page

A quick analyss

Experiment Type: 2

] custom Analysis ®  Standard MultiRLF Merge (standard experiments merged)
This option alows you to choose which modules to run and customize al of Chaose muduIES tD run: 5
the sattings. .2
¥ Overview Choose an annotation for defining probe sets: ?
¥ Normalization Probe.Annotation v
¥ Differential Expression Choose additional image types to create: ?
Pathway Scoring None v
e R iing ¥ Omit Low Count Data 2 m
Probe Descriptive
Related Analytes
Analysis Type

_ Selecting these modules adds them
| | I to the menu. See following page.

General Options

L, | Normalization

Advanced Analysis allows you to normalize each analyte type with
its own custom settings. Manually select probes or allow the
Differential Expression . software to automatically select the best performing probes. It
can also refine the list of probes to the top 10 (or other number
of your choice). See previous page for resulting plot.

Normalization Parameters

Normalization

Summary / Save Settings

¥ Normalize mRNA ¥ Normalize Protein

® Automatically find good nommalization probes Automatically find good nomalization probes
# Refine the list ® Manually select nomalization probes
Useonlythebest 10 v | probes 4-188(484-1)

Manually select normalization probes

Summary/Save Settings
This displays a summary of your
settings for the current analysis and
allows you to save them for a future
application.

Differential Expression

ferential Expression

your differential expression model. Predictors and

Available Annotations ? Selected Predictors

confounders are treated equally in this model, but results New Anotation

. . . &l
will only be shown for predictors. Choose to run DE using
the Optimal or Fast/Approximate method. The Optimal Selected Confounders
method is robust for estimating differential expression
when probe counts are low or near background but B
computationally demanding. The Fast/Approximate ® optimal Fast/Approximate
method works well for probe counts observed significantly P-value Adjustment 2 | genamini-Yekutiel ¥ | ¥ Run GSA (ves/no) 2

. N . ¥ Display Results Using Pathvi
above noise. The PathView plots can be colored by either t- i O e
isplay top 20 ¥ | pathways Pick pathways I want displayed

statistic or fold-change. See previous page for resulting Color Plots by Fold Change v | Pvalue Threshold 0.05
plot.
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Pathway Scoring

Use the green arrows to select variables
to plot against pathway scores and
variables to adjust for before calculating
pathway scores. See below for plot.

Pathway Scoring
125 - ’
Available Annotations Plot Pathway Scores Vs
Treatment n
Adyust Pathway Score For

T

Pathway Scoring
Cell type Profiling
Probe Descriptive

Relzted Analytes

Cell Type Profiling

Use the green arrows to move at
least one covariate from Available
Annotations to Selected to analyze
cell population abundance.
See below for resulting plot.

Cell type Profiling

Auailable Annctations
Treatmant

Selexted Annotations.
Trastrment

Column Spacifying the Gell Types' Characteristic Probes
® Uso Defauik (Cal. Type) Custom
Craating Signatures: 7
Use All Probes ® Dynamically Select 3 Subset
P-value Theeshold for Reporting Call Type Abundance:

Uplaad Your own

Probe Descriptive

Search for probe names to calculate
detailed metrics on a smaller subset
of genes. At least 5 genes need to be
entered for Principal Component

Analysis
resulting plot.

biplots.

See below for

Probe Descriptive

Search for: @ miA ¥ Protein

Grouping Annatations 7

Temstn - B testmen

Generate Trend Plots 7
Generate Interaction Network

Pathway Score

v

Cell Type Profiling

Related Analytes
Related probes for
analytes will be listed. Use the
green arrows to move the probe

different

pairs of interest. See below for

resulting plot.

Related Analytes

Grouping Annotations
Treatment

Treatment

Generate Trend Plots

Pathway Score
The Pathway Score
summarizes the data
from a pathway’s
genes with a single
score. The heatmap of
Pathway scores shows
a high-level overview
of how the pathway
scores change across
samples.

—

=

Probe Descripiive

Related Analytes

Related Analytes

This module compares
the expression levels of
multiple analytes when
they have been linked in
the probe annotation
file. It applies all the
tools of the Probe
Descriptive module to
each pair of related
analytes.

4

Cell Type
Profiling

This module quantifies
various cell types using
cell type-specific
marker genes.

o100 alue)

Probe Descriptive

This module provides detailed descriptive analysis of 1—
15 genes selected using univariate and correlation

plots. When at E——
least 5 probes are
selected, PCA

biplots and ;
parallel coordinate *

plots will also be
generated.

T
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What to Do Before Performing Advanced Analysis

Meaningful and effective Advanced Analysis outputs rely on properly-designed experiments and well-

prepared data.

Experimental

Design

Experimental design drives the quality and clarity of downstream analysis results. Considering the number
of samples, replicates, and variables ahead of time is essential.

o If working with categorical variables, arrange to run at least three biological replicates in each

category.

o Probe annotations document the biological significance of the probes and link them to the

pathways with which they are associated. Check your probe annotation file to ensure the fields you

need are filled. For help with your annotation file see the Managing Probe Annotations section.

o The default unique Identifier for your samples is the file name. This may appear long or complicated

in visualizations, so you may consider creating a simpler identifier using the Description column in

nSolver.

Ensure that any SNV references you may incorporate utilize the same identifier category.

o Use your sample annotations to label both confounders and predictors. These will become your

covariates to choose for analysis.

O

A Confounder is a variable which affects your data but which is not scientifically relevant.
Technical confounders are variables such as run date or cartridge lot. Experimental
confounders are variables such as patient body mass index or age. You will want to
investigate each confounder’s effect on your data in such a way that it does not complicate
the effect of any predictors included for analysis. Ensure that any confounding variables do
not wholly overlap with predictors.

A Predictor is a variable which affects your data and which is scientifically relevant.
Examples include treatment type, treatment time, and cell line. You will want to investigate
each predictor’s effect on your data in such a way that it is not complicated by the effect
of any confounders included for analysis. Sample annotations (established during
experiment-creation in nSolver) can be used to distinguish predictors and test for their
effect on the data in Advanced Analysis.

nNanoStrin
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Tips: recommended workflow

It is helpful to run Advanced Analysis through a multiple passes process.

First pass: include all samples and all possible predicting and confounding variables. Run the Quick Analysis
and view the Overview, Normalization, and Differential Expression modules and check plots on these tabs
for clustering and bias; these indicate variables which are impacting your data. Use this information to
determine which samples and covariates to choose for your next pass.

Second pass: remove samples that failed QCin the first pass. Choose the covariate that is most scientifically
relevant to your project and set up a Custom Analysis. Choose analysis modules and parameters that fit
your experimental design.

More passes: analysis can be further modified after reviewing analysis results from previous passes. This
includes removing outlier samples, using a different covariate(s) and applying different parameters to
analysis.
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nSolver 4.0 Data Preparation

Advanced Analysis requires either raw or normalized data from an nSolver experiment as well as the
appropriate RLF. Below is an abbreviated description of the nSolver 4.0 workflow required to prepare your
data for Advanced Analysis. Refer to the nSolver 4.0 User Manual (MAN-C0019) for more details.

RCC  RLF

S s BT

Raw Data Tab —— - wrevoGiopemens

30_SOLIDTUMOR ST

NS_ST_DNA_V0.9

NS_H_MIR_V3A

NS_CANCERIMMUNE_RNAPROTEIN_D) D
NS_CNV_HS_CANCER_C1399

("5} nSolver Analysis Software 4.0 -0
Import RLF
File RawData Study Experimen it Analysis Export Preferences  Help
\.A. e e oc} o2t £ 5o

New Experiment E

ER”

RLF CodeSets

N2_HS_LEUKFUS_V1.0
UkFusv_1_02.RCC
ukFusv_1_03.RCC
1 UkFusv_1_04.RCC
| ukFusv_1_05.RCC
RCC Fl | e » ukFusv_1_06,RCC
1 - UkFusv_1_09.RCC
| ukFusv_1_10.RCC
ukFusv_1_11LRCC
~pet| LeukFusv_1_12.RCC
5cs| LeukFusv__1_07.RCC

Import RCC Files New Study

REC Import RCC Files

R |
)

% New Study

| Welcome to nSolver Analysis Software 4.0 | 9:18:26 AM

Figure 5: nSolver dashboard — raw data tab

Import Files & Explore Raw Data

A Reporter Code Count (RCC) file is an output file generated by nCounter instruments. One RCC file is
produced for each sample tested; this one file contains the barcode counts from each gene and control in
the CodeSet. RCC data files should be saved on your computer or USB drive. Open your data folder and
unzip data files using right click and Extract All. Open nSolver 4.0™ and select Import RCC Files. Browse for
and select your samples of interest. Select Data has fusion probes if working with fusion data (this allows
you to designate fusion probes). Select Open. Review QC parameters, then select Import.

A Reporter Library File (RLF) is a file specific to your CodeSet. It provides nCounter instruments and the
nSolver 4.0 software application with valuable information about the CodeSet, such as the assignment of
probe to gene. To import, select the Import RLF File icon on the toolbar at the top of the page. Browse to
navigate to the folder in which your RLF file is stored and select Import. Importing the RLF is required for
Advanced Analysis. SNV references may be run on a separate RLF; this should be imported, as well.

After importing to nSolver 4.0, your RCC data files will be stored under the corresponding RLF file CodeSet
on the Raw Data tab. Selecting the CodeSet name allows you to view all RCC files in a table format. Scroll to
check for QC flags. Use Description column to create shortened sample identifiers.
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Create a Study and Experiment

Select the New Study button to create a study, then the New Experiment button to create an experiment
under that study. Follow the prompts to select the samples to include in your experiment.

Annotations assigned here can be selected later as covariates (variables) in Advanced Analysis (see the
Identifiers and Covariates section). Carefully consider your experimental design at this stage (see the
Experimental Design section), as it can have an impact on visualizations created later in Advanced Analysis.

Background correction and Normalization steps are not necessary if the data will be processed by Advanced
Analysis; the plug-in will perform its own thresholding and normalization and will pull the raw data from
nSolver. You will be prompted to select SNV reference samples (RCCs and RLF must already be imported
into nSolver) if working with SNV data. Fold Changes (Ratios) can be calculated by specifying the sample(s)

that represent the baseline of your experiment.

I~ nSolver Analysis Software 4.0 = I:I
File RawData Study Experiment Analysis Export Preferences Help
b by o x O wm R X e b sinm e (SEIED N NS G RN - G
Experiments Tab — 1 == == i o 2 77 22 W 00 A0 00 AT A g o )
: (Tt | 2 propertes
Q- Type here to fiter [ s |
=l Studies I
StUdY\ 4 9 30 test study Fiter: Normakzed Data Name v Matchif: is anything v + | Go || Reset }
41 [ CancerImmune test
L | p i [ CNV Cancer Study 5 i ; 1
Experiment *; Wlesem sy i XL llly . *— Table/Export/Analysis buttons
7T - i RawDeta Table Export Anslyss  Advanced Analysis € . .
R olumn Options icon ‘
L{Normalized
v:. amm \ = |
::' '::y:;m 12 Normalized Data Name Treatment Group  Cartridge ID Lane Number Sample Name. Descripbon Batch ID 1
5 1 ESE—a
> Moy : i . =— \
4 o 1 0%, [owmeos.| i [ |
Data Table »c ledFusy 1 05.... powmsoomste..| s | | ‘
3 |
7]
8 \
5 :
10 \
u - powiesomsie.. }
12 301010800705 5... ‘
i
I
|
[
\
<= T UFRNT T ,,,,,,?,‘
| Import RCC dane 12 of 12 rows selected 9:38:50 PM
Figure 6: nSolver dashboard - experiments tab
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Creating an Advanced Analysis

Select Data
Once you have created an experiment in nSolver 4.0, expand the navigation tree on the Experiments tab
(by clicking on the + sign) and highlight either the Raw or Normalized data level of your experiment.

o Raw data is typically used for most single-RLF experiments since the QC processes in Advanced
Analysis are more sophisticated than those in nSolver.

o Normalized data should be selected for any multi-RLF experiment.

Highlight the samples you want in your experiment, utilizing the Exclude Selected and/or Keep Selected
buttons, if desired. The Filter tool is available, as well.

Select Advanced Analysis. Select the version of Advanced Analysis you'd like to use (if more than one is
installed) choose a Name for the analysis, and Browse for the location in which you would like the resulting
file saved.

Select Next. A warning will appear if nSolver detects a version of R which is incompatible with the program
(R version 3.3.2 is required for Advanced Analysis 2.0). See the Downloading R 3.3.2 section.

5| nSolver Analysis Software 4.0

File RawData Study Experiment Analysis Export Preferences Help

S RLSA Slh W ““ "“‘ : E . .‘I.H'l‘ll‘.,'”l IH H i

iz Raw Data | Tl Experiments J i= List ‘ Properties
Q.- Type here to filter
E-'51 Studies
[ [ Fusion Study Filter: ‘lee Name v ‘ Match if: |is anything v | | | |E| ‘ Go || Reset
= [ RMA Protein Study
= ] RMA Protein Experiment

Filter RCC Files

= o®m & 4 Ok |

View Table Qc Export Analysis Advanced Analysis

1]
Lo i Analysis Data
- [ SNV Study

12 File Mame Description Batch ID % Probes Abov. Carmdge D Lane Number Import

FEwowoonswne

By e somoe e || e e ihin

‘Welcome to nSolver Analysis Software 4.0 H 12 of 12 rows selected ” 11:37:53 AM

Figure 7: starting an Advanced Analysis
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Identifiers and Covariates

Identifiers are unique names that differentiate every sample from the others. The Sample File Name will
always be unique, but can be long, so you may choose another type of identifier for this reason. Any sample
attributes that are unique from sample-to-sample will have a check box in the Identifier column and will be
available for use. Only one box may be checked for the Identifier category.

Covariates are variables which the Advanced Analysis tool can isolate and assess the effect of. At least one
covariate must be selected by checking a Use in Analysis box. Multiple covariate options are available,
including:
o Any RCCfile attributes, including Cartridge ID, Lane Number, Assay type, Scanned date, Comments,
FOV Count, and Binding Density. Note that these technical covariates are useful for QC purposes
only (e.g. assessing batch effects).

o Any sample annotations added to the lanes in the nSolver experiment wizard during the creation
of the experiment (see the nSolver Data Preparation section).

o Any additional sample annotations imported from an external text file in this dialog box.

Too many covariates selected in one analysis can complicate matters; it is often wise to consider which
variables are potential confounders and which are potential predictors and run multiple analyses, selecting
different combinations of covariates in each analysis.

Select the type of identifier and covariate you have using the Choose Type column; you may choose
categorical, continuous, or True/False. If categorical, you will need to select a Categorical Reference, which
will serve as a baseline sample for analysis.

Select one check box in the Identifier column and at least one in the Use for Analysis (covariate selection)
column and select Next.

Use the Import or View Annotations buttons to import new or view existing sample annotations,
respectively.

Identifier Use in Analysis Annotation Choose Type Categorical Reference
B Group Identifiers
P ] File Mame Categorical » RMA_Protein Sample Data_01_ .
7 ---mmm--mmm--mm---
] Lane Number Categorical

I Group: RCC annotations
E| Group: Experiment annotations
Treatment Categorical » Unstim -

Import || You can import new annotations from external csv file. View Annotations

Figure 8: selecting identifiers and covariates
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Analysis Type
In a Quick Analysis:
o The analysis is performed with default parameters.
o Probe annotations are not required for mRNA and Protein analyses.

o The core modules are preselected — Overview, Normalization, Differential Expression, GSA, and
PathView.

o Only asingle covariate is used for differential expression (DE) analysis.

In a Custom Analysis:

o Multiple menu tabs appear to the left of the screen (see the General Options Custom Analysis Menu
section, as well as the Custom Options section found in each respective module section), allowing

you to customize parameters.
o Probe Annotations are required for GSA, PathView, Cell Type Profiling, and Pathway Scoring.

o In addition to the core modules, Overview, Normalization, Differential Expression, GSA, and
PathView, you have access to Related Analytes, Probe Descriptive, Cell Type Profiling, and Pathway
Scoring. You can select or deselect these to customize your analysis.

o You may select multiple covariates for analysis.

Probe Annotations tab
appears if click here link

was selected below —P  probe Annotations Analysis Type

Analysis Type tab —  analysis Type Quick Analysis

a ppea rs by defa U|t A quick analysis will perform experimental setup QC and differential
General Options expression testing using a single sample annotation field to group samples.
Note that the baseline reference for the selected sample annotation is
Custom Module tabs Normalization specified on the sample annotation page.

appear when Custom

Analysis iS selected Differential Expression
m Custom Analysis
Cell type Profiling This option allows you to choose which modules to run and customize all of
the settings.

Summa ry tab —P  Summary / Save Settings
appears by default

Default probe annotations were loaded for your experiment.
To upload or crezte annotations, click here.

If working with

custom CodeSet,
Figure 9: analysis type and custom analysis tabs you must import

Probe Annotations.
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Probe Annotations

A message indicating the status of your probe annotations will appear at the bottom of the Analysis Type
window. Most commercial panels come with probe annotations pre-loaded; you may use these, replace
them with you own file, or customize them using the click here link. See the Managing Probe Annotations

section.

Load Settings

Select this button to browse for a saved settings file from a previous analysis from a common CodeSet. This
will load the saved settings as well as the probe annotations. Covariates may need to be re-selected for
analysis; navigate to the module menus to reselect or confirm covariates for analysis.
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Manage Probe Annotations

The nCounter Advanced Analysis plugin uses probe annotations to define the biological functions of the
respective probes present. For most commercial CodeSets, the Probe IDs are collectively imported through
the RLF. If working with a custom-designed nCounter CodeSet, however, you may either request probe
annotations from NanoString or create a probe annotation file using a template (see sections below).

Probe annotations:

o Define KEGG IDs that associate pathway membership of the target gene or expression
characteristics of a cell type to perform cell type profiling of the data.

o Assign Gene Set membership where a ‘set’ identifies a broad biological function category such as
‘Adhesion’.

o ldentify Related probe-pairs such as mRNA and Protein counterparts of a target gene (sharing the
same NCBI gene ID).

If You Do Not Have Default Probe Annotations

For Custom CodeSets and a subset of NanoString Panels, Probe Annotation files are not automatically
uploaded by the software; in these cases, an alert at the bottom of the Analysis Type screen will be
displayed: Default probes could not be loaded for some or all of the probes in your experiment. In this case,
you may do one of the following:

o Run a Quick Analysis with no probe annotations (mRNA and Protein).

o Request a probe annotation file from NanoString (see the Requesting Probe Annotations from
NanoString section).

o Create a custom probe annotation file from a template (see the Creating Probe Annotations for
Custom CodeSet Data section).

Creating Probe Annotations for Custom CodeSet Data

In the Analysis Type window, select the click here link to open the Probe Annotations window. You may
also access this window by selecting the Probe Annotations tab, if visible. Select the Download CSV button
and save the ProbeAnnotations.csv file to your computer. Modify this template file to include annotations
that suit your analysis needs. The properties of each of the columns are explained in Table 1. See the
Importing Probe Annotations Files section for next steps.
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Requesting Probe Annotations from NanoString

If you would like to request a probe annotation file from NanoString, send an email to
bioinformatics@nanostring.com with a request for probe annotations, including the following information:

o The name of the RLF for the nCounter data that you wish to analyze.

o The annotation database that you would prefer to employ - GO molecular function, GO cellular
component, GO biological process, KEGG BRITE, KEGG Pathway, or Reactome.

o If working with a multiRLF Merge Experiment, include the nSolver experiment report for the
multiRLF Merge experiment as an attachment.

o Ifthe datais from a CodeSet Plus RLF, send the RLF file that was used to scan the nCounter cartridge
to generate your data.

Save the .csv file for probe annotations that you receive from NanoString to your computer. See the
Importing Probe Annotations Files section for next steps.

Importing Probe Annotation files

In the Analysis Type window, select the click here link to open the Probe Annotations window. You may
also access this window by selecting the Probe Annotations tab, if visible. Select the Import CSV button.
Browse to the desired probe annotation file and select Open.

Scroll through the preview of the annotations displayed in the screen to confirm that your custom
annotations have been applied. When you are satisfied, select the Analysis Type tab again and confirm that
the message at the bottom of the window now indicates that Probe Annotations were loaded for your
experiment.

Proceed to the General Options section if running a Custom Analysis or the Back to the nSolver Dashboard
section if running a Quick Analysis.
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Table 1: Probe Annotations file format

Column Column Name Description

Number

1 ProbelD The Probe ID must be unigue within the file

2 CodeSet.Name RLF

3 Probe.Label Generic name for the target mRNA or Protein

4 Analyte.Type Indicates whether the probe detects an RNA or Protein target

5 Is.Control Boolean. TRUE or FALSE

6 Control.Type Indicates whether a Control probe target has Exogenous (e.g., ERCC probes),
Endogenous (Housekeeping), or Negative controls

7 Related.Probes Semicolon-delimited list of Probe IDs. Identifies probes for mRNA and Protein
counterparts of a gene. Probes for splice isoforms or phosphorylated vs. non-
phosphorylated counterparts. Values in this column are necessary to run the Related
Analytes module

8 Probe.Annotation Semicolon-delimited list of annotations. Identifies Probe sets characteristic of a
biological function. By default, this column defines the annotations for grouping
probes for Gene Set analysis and Pathway scoring Modules.

9 KEGG.Pathways Semicolon-delimited list of KEGG Pathway IDs; values in this column are necessary to
run the PathView Module

10 Cell.Type Identifies cell types in which target genes have known characteristic expression. By
default, this column defines the annotations for running the Cell Type Profiling
module.

11 Official.Gene.Name | HUGO gene name http://www.genenames.org (I'd replace this entirely with: “Official
gene symbol per NCBI”. That happens to be HUGO for human but MGl for mouse...

12 Fusion.probe.type | penotes whether the probe identifies a junction (fusion), 5" expression (5p) or 3’
expression (3p)

13 Fusion.base The group of fusion products to which the probe relates. For instance, the oncogene
related to an imbalance probe or set of fusions (like BCR-ABL) to a specific fusion
junction

14 SNV.probe.type Denotes whether the probe identifies reference or variant bases

15 SNV.LocID An identifier linking all related variant and reference probes for analysis purposes

16 SNV.annot Name for each probe to be displayed, intended to be more reader-friendly than the
name in the RLF.

17 Add additional columns starting at column 12. When present, these will be available
as a custom annotation column for specifying the column defining probe sets for Cell
Type Profiling, Gene Set Analysis, and Pathway Scoring.
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General Options Menu

If you've chosen to run a Custom Analysis, you can start

. . ? The question mark button
customizing on this tab. L
reveals additional
Choose the appropriate Experiment Type. Standard refers to a information.
single-RLF experiment. A MultiRLF Merge is a multi-RLF
! The  exclamation  mark

experiment created by combining more than one pre-created
button reveals an alert and

brief explanation as to why

Choose an annotation for defining probe sets using the dropdown an ‘|OF|;t|ion ”;ay be
. TN . . . unavallable reyed out).
menu. This will impact the Gene Set options available in some (grey )

experiment in nSolver.

modules. By default, Probe.Annotation is selected.

Choose additional image types to create. The default image format is .png. Use the dropdown menu to
specify additional image formats for each image.

The Omit Low Count Data checkbox permits the software to remove genes that fall below a given low count
level. You can use the Adjust Parameters button to change the threshold options for the different analyte
types. The Overview heatmaps depict the probes pruned from analysis with a blue below threshold bar (see
the Overview Module section).

Choose modules to run. Click the module check boxes to display the corresponding tabs on the left under
Analysis Type. Click the appropriate tab to review settings and options. Some options may not be available
(may be dimmed) due to incompatibility with analyte types detected in the data and/or limitations in the
probe annotations.

(=] Advanced Analysis

nCounter Advanced Analysis - Options
Options

nanoString

Probe Annotations

General Options

Experiment Type: =

Fa
\/:\ 1

Analysis Type

*®  Standard MultiRLF Merge (standard experiments merged)
General Options Choose modules to run: 2

¥ Overview Choose an annotation for defining probe sets: ?
Normalization | Normalization Probe.Annotztion v

¥ Differential Expression Choose additional image types to create: ?
Differential Expression None v

\‘\ f‘M,J) Pathway Scoring
SNTT

Cell type Profiling

Probe Descriptive

@l pathway Scoring
¥ Cell type Profiling
¥ Probe Descriptive

mRNA

¥ Omit Low Count Data 2

¥ Auto Threshold Count Value 20 Observation Frequency 1
Summary / Save Settings
protein
¥ Auto Threshold Count Value 20 Observation Frequency 1

Figure 10: General Options menu and

Adjust Parameters button options
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Custom Analysis Module Menus

See individual module sections for information on Custom Analysis menu options. They are listed here:
Normalization, Differential Expression (includes GSA and PathView), Pathway Scoring, Probe Descriptive,
Cell Type Profiling, and Related Analytes. Custom Options for SNV and Fusion are included on the General
Options tab.

Summary/Save Settings

The Summary/Save Settings tab provides information about the current analysis and allows you to save the
settings and apply them to a subsequent analysis for data derived from an identical CodeSet. This is
especially useful when looking at the effects of different annotations on analysis.

To save the settings for a subsequent analysis with a common CodeSet, select the Save Settings button on
this tab.

To use these settings in a subsequent analysis with a common CodeSet, use the Load Settings button in the
Analysis Type window (see the Analysis Type section).

g _

Analyte types in data: mRNA, protein
Total number of samples to be analyzed: 12 2
Selected annotations:
Categories
Treatment 2

Summary / Save Settings

Data from NanoString panels: NS_CANCERIMMUNE_RNAPROTEIN_1.1
List of modules to be run:

Overview

Normalization

Differential Expression

Figure 11: Summary / Save Settings tab

Back to the nSolver dashboard
Select Finish.

You will be retuned to the nSolver dashboard. Highlight your analysis in the list and select Analysis Data to
view your plots and options.

This will open an HTML window and dynamically display the progam’s status. When complete, a summary
screen will appear. Click through the different plots and options for viewing data.
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Overview Module

The Overview module provides a general overview of the data through descriptive plots, organized into
four categories: Heatmaps, PCA (principal component analysis), Study Design, and Other QC. Heatmap and

Overview SNV Normalization Diff Expr GSA PathView Analysis Parameters Share

PCA plots can be drawn as a summary of all probes or in just the specific gene set of interest. Note: Fusion
and SNV data do not produce an overview module.

Heatmaps . PCcA . Study design . OtherQC -

Summary

Heatmap of Raw Data Heatmap of All Data
Cell Cycle - Apoptosis

Driver Gene:

JAK-STAT Signaling

KEGG Cytokines and Cytokine Receptors.

Treament Treatment

MAPK

Non-canonical JAK-STAT Signaling

Other Cytokine Genes

PI3K

PI3K-Akt Pathway

Ras

Figure 12: Overview module window and options

Before You Start Overview

This modgle is not intended to be used in in-depth Nies Pl kilocnation The More Plot Information
analyses; it should be used as a QC tool and way to button provides a

get a general impression of your data. description of the plot.

Designations for SNV and Fusion variant status as

well as covariates will appear at the top of the

heatmap. Some covariates will be used to perform
principal component analysis. Consider what
covariates you want to investigate and how your v eiE (Ehle M en be ewed, eshied,
covariate conditions overlap with each other. A printed, and saved. You may also Save or Save as
potential confounder which overlaps with a without opening. O indicates data below
potential predictor should be analyzed separately. threshold and 1 indicates data above threshold.
All factors to be investigated in the present study

should be annotated and selected for analysis.

The Detected/Undetected Calls button opens a
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Interpreting Results of Overview Plots

Raw Data Heatmap

This heatmap is generated from raw data and allows quick identification of samples and gene sets with low
signal. Each row of the heatmap is a single probe, and each column is a single sample. Colored horizontal
bars along the top of the plot identify SNV or Fusion variant status, if applicable, as well as QC flag status
and covariate categorization. The blue bar labeled below threshold on the left indicates probes whose
counts have fallen below threshold in all samples (see the General Options Menu section) and will be
trimmed out of further analysis for all modules except Probe Descriptive and Related Analytes. Unlike other
plots, clicking anywhere on this image will initiate the interactive heatmap in a browser window; clicking
again will return you to the original view.

o Dark Blue bars: counts < background (25)
o Light Blue bars: counts < 50

o Grey bars: counts < 100

o Brown bars: counts < 500

o Tan bars: counts = 500

Heatmap of Raw Data

IR 4— Detected/Undetected calls

Sample Anntations

Qc Flags
= Twe O False

ERAF.Genatype
B optwt B mutmut

SNV/Fusion variants
Datasets with exclusively =~ QCFlags &
low raw counts (e.g., counts ~ Covariates
< 100) may arise from
experimental failure or low

Treatment
= Duso B vEM

Probe Annotations
raw counts

H H H - - 25
input. Data with expressions Blue bar | =
near background must be indicates low =50
interpreted carefully. You signal data to be -
may consider using a higher trimmed out =
effective amount of input e
Samples
Figure 13: Overview - Heatmap of Raw Data
The detected/undetected calls button links to a .csv A 8 c D E F 6
. . 3 1 ‘ |TP53 IL22RA2 12 CCR5 PRLR LIF
file stating whether each probe is above |- mRANA  mRNA mRNA mRNA mANA  mRNA
. . . . 3 SKMEL2-DMSO-8h-R1_04.RCC 1 0 0 0 0 1
background, with O indicating below and 1 |4 skMei2-omso-sh-r2_oarce 1 0 0 0 0 1
. . . . . 5 SKMEL2-DMSO-8h-R3_04.RCC 1 0 0 0 0 1
indicating above background. If you did not specify | & skveiz-vem-sn-ri_tomcc 1 0 0 0 o 1
a detection threshold (see the General Options | samsvewsnarionce —a—
H H 9 SKMEL28-DMSQ-8h-R1_04.RCC 1 0 0 0 1 1
Menu section), probes for mRNA will be called |} {ieoveosnss osnce 1 . o oo .
1 11 SKMEL28-DMSQ-8h-R3_04.RCC 1 0 0 0 1 1
detected if they have more than double the counts |7} ZEeonee eie on e : : ; e L 1
of the median negatwe control. above background detection call ®

Figure 14 :Overview - detected/undetected calls table
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Heatmap of All Data

This is a heatmap of the normalized data. This data is plotted by z-score and is meant to provide a high-
level view of the data and possible associations to covariates of interest. Each row of the heatmap is a single
probe, and each column is a single sample. Colored horizontal bars along the top of the plot identify SNV
or Fusion variant status, if applicable, as well as QC flag status and covariate categorization. The blue bar
labeled below threshold on the left indicates probes whose counts have fallen below threshold in all
samples (see the General Options Menu section) and will be trimmed out of further analysis for all modules
except Probe Descriptive and Related Analytes. Clicking anywhere on this plot results in a zoomed-in image;

clicking again returns you to the original view.

This plot is scaled with relation to the average probe performance across samples to give all genes equal

mean and variance. Hierarchical clustering is used to generate dendrograms.
o Blue: low expression
o Black: average expression

o Orange: high expression

Click anywhere on the normalized heatmap to open an interactive view.

Heatmap of All Data

More Plot Information

SNV/Fusion variants
QC Flags
Covariates

Blue bar indicates low
signal data to be
trimmed out

s hiesheld
ERMELIE0I S0 B
SAMELIENER B

SRMELZBONED BRI

3
HILAF Canotype “
Treatment

1
s
50
STy

Samples

Figure 15: Overview — Heatmap of All Data

Sample Annotations
ac Flags
B Tiwe O False

BRAF.Genalype
H owiwt W mut mut

Treatment
B oMso B vEM

Probe Annotations

z-sc0r8s

flagiprune
| yes
B no
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Highlight an area on the selection bars to the right and below to zoom in. Click on the main image to zoom
back out. Click within the main image to open a window which allows you to adjust the plot and label
settings. Right-click to save the HTML file or page. Use the X in the upper-right corner of the window to
return to the original view.

I HEPSDBT - mRNA — HEPBOBI - mRNA
- mRNA — JAKT - mRNA

= JAK

—{nodsta}

Analyte Type

=8 ~ mRNA
= Tibenn 1662 protein

& & [ & & o L & L &
Ty Ty Tty T, Ty Ty i, o, K i, KA T
®, %, %, ®, %, 2 % % %, %, %, ®,
% % % % %, &) 4 4 %, %,
%ﬂc Q,,NO o"“o L, 2 “, e s 5, £ @4,‘%
% 2 k! o "%, %, s, ) s,
%e, e, k¢ "4, % %, "
N ~ % 0 & 23 G 0 % "%, (& - pratein
ﬁ." )90 (5 G R Q CC‘ < e Of' O(' @

Column Z-Score
—2%

Figure 16: Overview - Heatmap of All Data - zoom view

Select one of the gene sets along the left side of the window to view a normalized
data heatmap specific to that set of genes.

Adhesion

When you select a particular gene set from the left-hand tabs, a heatmap of
normalized data for just the genes in that gene set is displayed. Expression values
are centered and scaled. Orange indicates high expression; blue indicates low
expression.

Antigen Processing

B-Cell Functions

Cell Cycle

Cell f

homokines
Complement

CT Antigen
Cylokinos
Cylotoxicity
Interlouking
oukocyte Functions

Macrophage Functions

Figure 17:
Overview - gene
set list
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Principal Component Analysis (PCA)

Use the dropdown menu in the PCA: header to choose which covariate to analyze.

Principal component analysis transforms data with multiple variables into a linear set of principal
components. Principal component 1 (PC1) captures the highest level of variance, PC2 the next highest, PC3
next, and so on. The resulting image (see Figure 18) plots each PC vs. another twice and colors the points
by the selected covariate (once on one side of the diagonal and once on the other). The boxes on the
diagonal each contain a PC name; all plots in the same row will have this PC on their y-axis and all plots in
the same column will have this PC on their x-axis. Viewing the PCA plot for one covariate and then toggling
to another may help identify clusters in the data associated with a covariate.

Gene sets:
Heatmaps

Summary

PCA: BRAF.Genotype

Study design

Other QC

Cell Cydle - Prindpal Components of Al - SEEEEE Covariates to
.
Apoptosis BRAF.Genotype choose from
Driver Gene
JAICSTAT PC1 (y-axis) vs.
Signaling PC1 -0.57 <4+— PCA (x-axis)
KEGG Cytokines
and Cytokine .
Recepors - PC2 (y-axis) vs.
PC2-0.1 PC4 (x-axis)
MAPK BRAF Genotype
WT.WT
Mon-canonical mut mut
JAK-STAT PC3 (y-axis) vs.
Signaling PC3-0.09 PC4 (x-axis)
Other Cytokine
Genes Use the PC
designations on the
Pk PC4-000 diagonal to
PI3K-Akt Pathway - e e | Cetermine the x-
¢ e o and y-axis for each
Ras PC1-0.57 plot. Three plots are
2s°® Tboe » 1, *2 .4 labeled, above, as
* o N A0 ,* examples.
L] L] L]
: pc201 ||« o
. -4 e "4 . 1] o.. ° Treatment
In the 3D Bio Data Example (see . s . & oo
. . L] R L] -
Appendix A), a clear separation of sl ..
BRAF.Genotype data points can be ’ |0t ||Pes-oos °
seen in the PCl vs. PC2 results, L AL e bt * <
. . . . ¥ L] L]
meaning that changes in this variable o Ll e .
cause clear, consistent changes in [ " |7 * || ¢ °7, [|/Pc4-008
L * *
the data. Treatment does not have . . o

the same effect.

Figure 18: Overview — PCA plots with different covariates selected
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In the example shown in Figure 18, the first three principal components identify the variability in the data
associated with BRAF genotype status. Once you have reviewed the PCA plots for your data, you should
then review the covariates plot under Study Design (see below) to recognize any covariates that are highly
correlated with the biological covariate. Then, review the PCA plots by that confounding variable. Identified
confounding variables can be adjusted for in DE analysis or pathway scoring analysis. If specific gene sets
are selected from the Gene set tabs along the left side of the window, the same plots will be shown, but
only the genes defined in the specific gene set will be used in the analysis. A gene can occur in multiple
gene sets.

Outliers may be biologically interesting or caused by technical artifacts such as failed reactions. Samples
that were initially flagged by nSolver and now appear as outliers in Advanced Analysis should be treated
with caution. Repeat the analysis after excluding outliers and confirm that any important analysis results
hold even when these samples are removed.

Study Design
The Study Design tab allows you to look at all the covariates and their relationships.

Examine these plots before viewing the main analysis results. Compare some of the technical covariates
(Binding Density, for example) to biological annotations (Subtype, for example). Seeing the distribution of
samples among the covariates and conditions may give context to an observed result or suggest changes
needed to the experimental design. If one covariate wholly overlaps with another, it will be difficult to
discern if one is a predictor and the other a confounder. For example, in an experiment testing different
subtypes, if each subtype was scanned on a different date, the scanned date covariate could confound the
effect that subtype has on the samples. As an additional example, if samples belonging to different
genotypes were correlated with binding density (which is a surrogate for sample input quantity), any
conclusions drawn should be based upon adjusting for binding density as a confounder.

Distribution of BRAF.Genotype Distribution of Treatment
BRAF.Genotype vs. Treatment

£
£

DME0
WYEM

wtwt
Lt

Figure 19: Overview - Study Design
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Other QC

Other QC provides two types of analysis graphs, histograms of p-values and mean and variance scatter plots.
The histograms provide a good way to see what variables are having a big impact on your data (see below).
This knowledge, combined with what the experimental covariates tell you about what variables are
correlated, allows you to separate these variables in Differential Expression analysis and avoid confounding.

Histograms p-value distribution plots

Covariates with no association with gene expression display
mostly flat histograms, and covariates with widespread effects on
gene expression have peaks near zero. Technical covariates with
such left-weighted histograms may have biological relevance, 209
and it is sometimes advisable to adjust for them in differential
expression analyses to avoid confounding.

Treatment

In some cases, a covariate with no effect will be correlated with
a covariate with a powerful effect, producing a left-weighted
histogram. In datasets with larger sample sizes, there is little 51
harm in adjusting differential expression analyses for likely
unimportant technical variables like Scanned Date, but in smaller ' ' ' ' T 1
. . . . . N 0.0 0z 04 0.6 08 1.0
datasets, including irrelevant variables will reduce statistical
power.

Frequency
=
I

p-values

BRAF.Genotype

100 5 1M

@
=
|

In the 3D Bio Data Example (see Appendix A), the conclusions
drawn from the PCA (above) are reinforced by the p-value
histograms under the Other QC tab, which shows a clear left-
weighted plot for BRAF.Genotype samples, meaning there are a
number of p-vaules in the significant range, close to zero. The

Treatment p-values are more evenly distributed, indicating lower mwm

significance. . : : : . |
0.0 0z 04 0.6 o0e 1.0

Frequency
@
2
|

B
=
1

(5]
=
1

o
L

p-values

Figure 20: Overview - Other QC p-value
Distribution Plots
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The Mean and Variance Scatter plot

This plot shows each gene's variance in the log-scaled, normalized data against its mean. Highly variable
genes are indicated by gene name. Housekeeping genes are color coded according to their use in (or
omission from) normalization. The plot confirms that the selected housekeeping genes are stable (given
their low variability and moderate expression levels). This plot highlights genes that are expressed at
moderate to high levels and show great variability; these may be of interest for further study.

High
variance

Low
variance

Variance vs. Mean normalized signal plot across all targets/probes

More Plot Information Mean and Variance slatistics across all genes

‘ariance(log2 expression)

Endogenous genes
* Housekeepers used in normalization
Housekeepers - unused

IL13RAZ- mRNA

15

10

SPP1 “mRNA

LR
LIF - mRNA
SPRMATKRNERNA
NATLm o ,,',ﬁ,;: "Nihospho-s RibosqrabErolER SE1225/224 - protein
o W O EeeG
T T T T T T -
- 4 6 8 10 12 14

Mean(log2 expression)

v

Low High
expression expression

Figure 21: Overview - Other QC - Mean and Variance Scatter Plot

More Plot Information | The More Plot Information

button provides a
description of the plot.

Mean and Variance stalistics across all genes I

The Mean and Variance statistics across all genes
button opens a .csv data table that can be viewed,
edited, printed, and saved. You may also Save or
Save as without opening. It provides the average
normalized count and the variance normalized
count for each probe.
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Normalization Module

Overview Normalization Pathway Score Diff Expr GSA PathView Cell Type Profiling Probe Descriptive Related Analyles Analysis Parameters Share

Data normalization seeks to eliminate run-to-run and sample-to-sample technical variability in the raw
counts, which arises from inconsistencies in effective sample input and fluctuations in the overall efficiency
in capturing and counting target molecules. This module normalizes each analyte-type separately, resulting
in clickable analyte-type tabs which reveal respective plots.

For mRNA data, the Normalization module displays two plots: the Pairwise Variance During HK Selection
plot, detailing the selection process of the geNorm algorithm (Vandesompele, 2002), and the Normalization
Summary, which summarizes the performance of these chosen normalization genes.

For Protein data, the Normalization module displays three plots. The first is the Probe Stability plot, which
ranks the stability of all proteins in the dataset and selects the 15 most stable probes for normalization.
Second, is the Normalization Summary, which summarizes the performance of these chosen normalization
genes. The third plot is the Protein Expression Threshold plot, which visualizes the background-subtracted
normalized counts for each of the analyzed proteins (counts lower than zero after background subtraction
are thresholded to zero).

ANALYTE: [JEGTIEN orotein
Pairwise Variance during HK Selection Normalization Summary: mRNA
Hor Pt ot

Dot e

Genes selected using geNorm
Normalization summary: mRNA

* cglected
0045 unselected SEI'T.E_Z
=
2 0.45
@ )
20.040 s
a g
2 =
z . I |
S0.035 - g 040
E §
E =
20,030 £ L]
s . g o35
b @
= . [
20.025 §
- -
w 2
z .. = 030
20020 . = o)
" . w [ ] ®
.o - . L] . " . -t =
0.015 — . 025
T T T T ® * * ..
0 10 20 30 ; . : :
1 0 1 2

Order removed

MNormalization factor

Figure 22: Normalization module window and options
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Before You Start Normalization

Advanced Analysis does not automatically detect whether input data is raw or normalized. Raw data is
usually the preferred selection, as the built-in algorithms help to determine the best normalization probes.
Please note that normalization performed using the Advanced Analysis module will override any
normalization previously performed in nSolver.

Because multiRLF Merge experiments originate from multiple nSolver experiments (whose data has
presumably already been normalized), the Normalization module will not be available (will appear greyed
out).

Most commercial CodeSets come with pre-identified potential reference genes. The built-in geNorm
algorithm will determine the best performing of those reference genes and use them for normalization.

Custom Options for Normalization

The Normalization Parameters tab allows you to specify 3 The question mark button
parameters to normalize mRNA and Protein probes reveals additional
independently. information.

For each analyte type detected in the data, select automatic or

manual methods for choosing Normalization/Reference genes.

Automatic normalization is the default; check the Refine the list . .

b . his i | lizati ! brief explanation as to why
ox to customize this list. Manual normalization allows you to s @mien  mEy e

specify candidate normalization probes and refine it to a list unavailable (greyed out).

consisting of at least 5 normalization probes

| The  exclamation  mark
button reveals an alert and

Analysis Type Normalization Parameters

¥/ Normalize mRNA ¥/ Normalize Protein
General Options
® putomatically find good normalization probes * Automatically find good normalization probes
i i Refine the list
Nomahrahie Refine the list
Manually select normalization probes Manually select normalization probes

Differential Expression

Summary / Save Settings

Figure 23: Normalization Custom Analysis menu
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Interpreting Results of Normalization Plots

mRNA Plots

For mRNA, in the Pairwise Variance during
HK Selection plot, the ideal normalization
genes are determined by selecting those
that minimize the pairwise variation
statistic. We see the order in which genes
have been eliminated from the list of stable
housekeepers (HK) as we travel along the x-
axis. The y-axis depicts the measure of
pairwise variation, which is re-calculated as
the housekeeper pool gets smaller and
smaller. The final two genes are not
displayed, since the statistic can no longer
be calculated. Pairwise variation will drop as
the less-stable reference genes are
removed. At a certain point, the program
will determine that removing any more
reference genes will begin to increase
pairwise variation again; this signifies that it
has reached the most optimal arrangement
and that the most stable reference genes
have been identified.

Pairwise Variance during HK Selection

More Plot information
Genes selected using geNorm
* selected
o unselected
=+
=
c [=]
=l
8 3 .
4] [=T|
® g
L]
@
Z =z .
O [=T|
® o
[=1
£
= [=]
2 E 4
s ° .
B
5 & .
= L=2
=
=2
E o ..
T g .e
=] ., -
- - -
w " - * ...
5 .
T T T T
0 10 20 30

Al Normalized Data ‘
CIEZED |
Download HK Genes ‘

Order removed

Figure 24: Normalization - mRNA Pairwise Variance plot

The More Plot Information
button provides a
description of the plot.

Each button opens a .csv data
table that can be viewed,
edited, printed, and saved. You
may also Save or Save as
without opening. Respectively,
they provide all normalized
data, mRNA normalized data,
and a list of the housekeeping
genes and the order in which
they were chosen by geNorm.
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For mRNA, the Normalization Summary
depicts samples by their normalization

factor on the x-axis and their Mean Normalization Summary: mRNA
. Mnmnmlnfmnannn AllNolrmIlzeﬂDala mRNANnmnanzeana
Squared Error (MSE) on the y-axis. As the .

normalization factor for a sample
increases on the x-axis, the standard Low-quality e
error of the reference genes decreases.  ,ormalization

Samples with lower counts will therefore A
have noisier data.

Normalization summary: mRNA

SKMEL28-VEW®h-R1_10.RCC

=
=
1

012 4

0.10 4

The overall quality of the normalization
decreases as the MSE increases on the y-
axis.

0.08 - L4

MSE of reference mRNAs from mean profile

mnRiosRce @
Samples with MSE values far outlying the ~ High-quality o — :
other samples are designated with their ieielaien " "
sample names on the plot. For these

samples, the chosen reference genes
might not be effective in their
normalization. The list of selected
housekeepers can be downloaded by

selecting the Download HK Genes button.  Figure 25: Normalization - mRNA Normalization Summary plot

Low counts, » High counts,
High std. error Low std. error

Protein Plots

In the Protein Stability plot, a measure of lity: profein
stability, the Mean Absolute Deviance (MAD), is
determined. Ideal proteins for normalization
have low MAD. Stability in this context is defined
in terms of how closely each probe follows the ¢ selected
sample average fold change. The intuition

behind this method is that the average (across all
Protein probes) up/down fold change for a
sample relative to the median expression profile =
(across all samples) roughly estimates the
normalization factor. In this setting, an ideal
normalizer probe in any sample shows a small
deviation from the average fold change of that
sample, and this is used to rank Protein probes
on how closely they resemble ideal
normalization candidate probes. ' ' ‘ ' ' ' '

Mean Absclute Deviance by protein

3.0

2.5

MAD
1.4

1.0

05
|

Figure 26: Normalization - Protein Stability plot
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For protein, the Normalization Summary
depicts samples by their normalization
factor on the x-axis and their Mean
Squared Error (MSE) on the y-axis. As the
normalization factor for a sample increases
on the x-axis, the standard error of the _
. Low-quality

reference genes decreases. Samples with A

. . normalization
lower counts will therefore have noisier A
data. The overall quality of the
normalization decreases as the MSE
increases on the y-axis.

Samples with MSE values far outlying the
other samples are designated with their  High-quality
sample names on the plot. For these normalization
samples, the chosen reference genes are

not effective in their normalization. The list

of selected normalizers can be

downloaded by selecting the Download

Normalizer Proteins button.

Normalization Summary: protein
Ve P
P et i

Normalization summary: Protein

0.10 o

o o
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1 1

WSE of reference proteins from mean profile
o
=S
2
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0.02
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Low counts, > High counts,
High std. error Low std. error

Figure 27: Normalization - Protein Normalization Summary plot

For protein, the Expression Threshold plot depicts log-
normalized expression thresholded to zero based on the
by-lane background level. This plot relies on the mean of
the negative antibody results and an estimation of
error. To estimate error, the module uses either the
standard deviation (if there are three antibodies to work
with) or the deviation from the PC1 best fit line (if there
are only two antibodies to work with).

Expression thresholded: protein

More Plot Information

Protein Expression
Background Thresholded

atsin Sample Dota_D7_D3 REC-

\_Pratcin Sarmple Dota_p7_08 REG-

\_Pratoin Sample Data_01_07 ROC - 10
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\_Pratzin Sarnple Data_D1_0S ROC-
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proteins,

Figure 28: Normalization - Protein Expression
Threshold plot
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Normalization Algorithm Details

As both sample input and reaction efficiency are expected to affect all probes uniformly?, normalization for
run-to-run and sample-to-sample variability is done by dividing counts within a lane by the geometric mean
of the reference/normalizer probes from the same lane (i.e., all probes/count levels within a lane are
adjusted by the same factor) 2.

geNorm selection of housekeeping genes

Normalizer probes can be specified by the user. When not specified by user (default), normalizer probes
are selected using the widely used geNorm algorithm (Vandesompele, 2002) as implemented in the
Bioconductor package NormgPCR. While expression of a good housekeeping gene may vary between
samples in non-normalized data, the ratio between two good housekeepers should be very stable. In other
words, good housekeepers are expected to rise and fall together and at the same rate. geNorm relies on
this behavior to iteratively remove candidate housekeepers with the least stable expression relative to
other candidates. geNorm is implemented in the Advanced Analysis module through the function selectHKs
in the NormgPCR package. This function, using the geNorm algorithm, ranks genes on the V number
(variation between successive norm factors as reference genes are removed). Genes are excluded when
their V number is equal to or less than the smallest V number for all the genes plus one (Vmin + 1).

To understand the how geNorm is implemented, consider the case where we have:

o nsamples
o p candidate housekeeping genes

o gene;j and genej, which are the raw expression of any pair of genes, i and j, respectively, from this
set of p genes.

For each of the n samples we could compute: log,(genei/gene;). Taking the standard deviation of the n log
ratio values gives a statistic that captures how these two genes in our sample set deviate from perfect co-
expression (as perfect co-expression across sample set would result in the standard deviation of zero). We
can call this value V.

For gene;, we can calculate Viy through Vi, and then take their average value to represent the average
degree of dissimilarity in expression pattern between gene; and all the other genes in the set of candidate
genes. This value was called gene stability measure, M;, by Vandesompele and colleages.

! This assumption holds true from empirical observations when expressions are not near the background
counts. Deviation from this assumption becomes stronger for expression nearing the background.

2 This normalization does not account for any batch effect that may exist if data from multiple CodeSet
batches are being analyzed together in the same study. In the case of multiple batches, we recommend
the use of reference or calibration samples to quantify and adjust for variability in probe efficiency across
batches of CodeSet before any subsequent analysis is performed. Some of the modules (e.g., DE) allow
adjustment for technical variables such as batch effect, however, when the experimental conditions and
batch effect are confounded, we cannot correct for the batch effect and use of a reference sample is
needed.
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o The larger M;, the more dissimilar the pattern of expression of gene i to the other candidate
housekeeper genes in the set.

o Mcan thus be used to rank the candidate housekeepers from the best (lowest M) to worst (highest
M) in terms of their similarity (co-expression) to other candidate housekeepers.

o We could subsequently choose the top 5 or 10 or however many housekeeper genes we believe
will be optimal.

If the optimal number of genes to be selected is not known, we can use an iterative process to select the
optimal number of housekeepers from among the candidates. Tracing the variation statistic as genes are
removed iteratively can allow us to find the point at which variation is minimized and relatively stable;
this is the point with the optimal number genes. Given n x p matrix of n samples and p candidate
housekeeper genes, the housekeeper selection proceeds as follows:

o Compute the normalization factor (NF) as the log geomean of the p genes for each sample to get
NF,.

o Compute My through M.
o Remove the gene with highest value of M.

o Re-compute the normalization factor as the log geomean of the remaining p-1 genes for each
sample to get NF,1.

o Evaluate the stability of the new normalization factor, NFy-2, by quantifying the change between
NF, and NF,.1. This is by variation statistic: Vp/p-1 = standard deviation (NF, — NFy.1).

o Re-compute M for each of the remaining p-1 genes.
o Remove the gene with the highest M.

o Repeat until all but the last two genes are removed.

Normalization

Consider the graph plotting the (raw) log count of normalizing probe in each of the samples against the
(raw) log geometric mean of those probes. In this context, points corresponding to each sample follow a
trend line with slope 1 and an intercept that captures run-to-run variability. In this setting, adjusting for
run-to-run variability simply involves subtraction of the intercept, which should bring the values
corresponding to any of the normalizing probes across all samples very close to one another (with some
variability due to noise). This is what we may expect when normalization is working well.

If there is large deviation from the expected line of slope 1, substantial variability will remain even after
subtraction of the intercept. This can be an indication of poor normalization quality. In Figure 29, sample A
has a positive normalization factor (indicating larger-than-average expression levels of normalizing genes)
and sample B has a negative normalization factor (indicating smaller-than-average expression levels of
normalizing genes). Additionally, we observe that the mean squared error, MSE, of sample A is larger than
the MSE of sample B, which may be taken as sample A not conforming to the described normalization
adjustment model as well as sample B.
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Sample &
Mormalisationfactor
(positive)

!

Sample A
MSE

Sample &

Average sample in experiment.

Sample B

Sample B
Mormalisation factor
{negative}

Sample B
MISE

Figure 29: Diagrammatic representation showing how the values for the Normalization summary are generated

Protein Expression Threshold

With the mean and error known, the background threshold for each line of the Protein Expression
Threshold plot is equal to the mean of negative antibodies for the lane + 1.96* estimated error. In the
heatmap, any antibody value below its estimated background is set to zero.
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Differential Expression Module

Overview SNV

Normalization

GSA

Diff Expr

PathView

Analysis Parameters

Share

The Differential Expression (DE) module is used to identify the specific targets which exhibit significantly
increased or decreased expression in response to the chosen covariate. This module provides the basis for
the Gene Set Analysis (GSA) and PathView modules and should be viewed prior to both. GSA explores

differential expression of particular pathways and
PathView shows that differential expression in the
context of pathway figures. The DE module lays the
ground work for this, which can be seen in the volcano
plot and the significant gene table.

The DE volcano plot displays each target's -logio (p-
value) and log; fold change with respect to the selected
covariate. Highly statistically significant targets fall at the
top of the plot, and highly differentially expressed genes
fall to either side. Green point colors and horizontal lines
indicate various False Discovery Rate (FDR) thresholds.

The 40 most statistically significant targets are named in
the accompanying chart.
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Figure 31:

DE - statistically significant targets table
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Before You Start Differential Expression

Multivariate DE analysis requires thoughtful setup. Sample covariates include predictors, variables that are
scientifically interesting or at the heart of the study, confounders, technical variables that impact
expression but are of no interest to the study, and uninteresting variables that do not impact expression.
The linear regressions treat predictors and confounders identically, but results are only reported for
predictors. It is recommended that you base your covariates on factors that are scientifically believed to
account for (explain) gene expression in your system. In addition:

o Ensure that any variables you include do not strongly correlate with each other, and similarly, ensure
two or more categorical variables don’t have redundant categories (see Figure 32). This essentially
nullifies the effect of both variables and the DE analysis will randomly drop one or both from the
model. Correlation and level-redundancy can be detected using the Study Design tab of the
Overview module. See the Study Design section.

o At least one variable needs to be chosen as a predictor (if using Custom Analysis); additional
variables may be selected as predictors or confounders. See the Custom Options for Differential
Expression section.

o Models with fewer variables are preferable. Generally, linear regression weakens as the ratio of
variables to the number of samples grows since including too many covariates in a model can
diminish its ability to detect the effects of the variable you care most about.

o Similarly, when working with categorical variables, models with fewer categories are preferable.
Comparison of each category to the reference category is treated as another variable; adding
categories is equivalent to adding additional variables, weakening the ability of the model to
determine the effect on expression.

In the example in Figure 32, the normal category in the Type column
. . 12 Type = Subtype

overlaps completely with the normal category in the Subtype column.
Not only is the Type annotation less informative than the Subtype L cancer typel
. e . . . 2 cancer typel
annotation, but DE module may have a difficult time with this. To Y — typel
remedy this, the Type column should be dropped. 4 cancer bype2
5 cancer type2
o cancer type2
7 narmal normal
& normal normal
9 narmal normal
10 mormal normal
11 normal normal
12 normal normal

Figure 32: Annotation example
- redundant variables may
cause DE analysis to fail
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Custom Options for Differential Expression

Custom Analysis can effectively isolate the effect of multiple
covariates on gene expression and avoid confounding due to
technical variables by allowing multiple predictors and
confounders to be included in the multiple regression model.

Highlight the Available Annotations of choice and move at least
one to the Selected Predictors window with the green arrows. You
may designate Selected Confounders, as well, if desired.

The Fast/Approximate method for estimating DE can be used for
most datasets, but Optimal, although more time consuming, is
more accurate for low count data and should be used for datasets
with low input samples or a high degree of low count targets.

Analysis Type

Available Annotations ?

General Options BRAF. Genotype

Treatement
Normalization
Differential Expression Selected Confounders
Summary / Save Settings

* Optimal Fast/Approximate

P-value Adjustment ?  Benjamini-vekutieli ¥

¥ Display Results Using Pathview
* Display top |20 ¥ | pathways
Color Plots by Fold Change v

¥| Calculate DE vs SNV Status

Figure 33: DE Custom Analysis menu

¥ Run GSA (yes/no)

P-value Threshold

< Back

The question mark button

reveals additional
information.
The  exclamation mark

button reveals an alert and
brief explanation as to why
an option may be
unavailable (greyed out).

Differential Expression

Selected Predictors

?

Pick pathways I want displayed

0.05

Mext Finish Cancel

Since nCounter data is multiplex in nature, we provide the option to apply an adjustment to the p-values
before plotting them in DE to correct for the high number of comparisons. You can select none if you would
prefer raw p-value thresholds throughout DE plots. There are three methods for P-value Adjustment:

o The Bonferroni correction is a very conservative approach to multiple testing: it multiplies each p-
value by the number of genes tested. Although genes with low Bonferroni-corrected p-values have
very strong evidence for differential expression, many genes worth consideration may be ruled out

by this method.

o The Benjamini-Yekutieli method returns moderately conservative estimates of false discovery rate
(FDR), but, importantly, makes the assumption there may be some biological connection between
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genes. FDR is the proportion of genes with equal or greater evidence for differential expression
(i.e. equal or lower raw p value) that are expected to be “false discoveries” due to chance. For
example, if a gene has p =0.02 and FDR = 0.25, then 25% of the genes with p < 0.02 are expected
to be false discoveries.

Benjamini-Hochberg is a method of estimating FDR that assumes that the genes and variable
studied do not have an impact on each other. This would be the best choice when it can be assumed
that the majority of targets and covariates studied don’t have a common biological/ functional
focus.

As introduced earlier, the DE results can be viewed through the optional Gene Set Analysis (GSA) and
PathView modules. To run those, select the Run GSA and Display Results Using PathView boxes.

O

GSA will result in summary heatmaps as well as labeling of the DE volcano plot, such that the genes
of each pathway are highlighted. See the Gene Set Analysis (GSA) section.

Selecting to display results using PathView will then allow you to display the top 20 pathways or
choose a different number (the analysis time will increase with the number of pathways
requested). You may also choose to display a hand-picked selection of pathways to view. The
software will overlay DE information over each pathway figure.

You may choose to Color Plots by fold change or T-statistic, and choose a P-value Threshold.
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Interpreting Results of Differential Expression Plots

Volcano Plots

The differential expression results are displayed as a volcano plot for each variable chosen as a predictor in
the regression analysis and table. A volcano plot visualizes the results for the chosen covariate in the DE
model. If using Quick Analysis, you will only have one covariate’s analysis to view. If you chose Custom
Analysis and chose multiple covariates, you can click on the buttons above the plots to choose which
covariate’s analysis to view.

The genes of greatest interest will be both high in the graph (corresponding to a very small p-value) and at
either the right or left side (corresponding to greatly increased or decreased expression). mRNA probes will
be displayed as solid circles and Protein probes as triangles. Note the following:

o

Note where the p-value thresholds lie and how much of your data is above the significance
threshold for your study (and is therefore appearing significant). If you selected a p-value
adjustment on the Custom Analysis menu, your thresholds will reflect the adjusted p-value,

whereas the axes will be based on raw p-values.

Points above your p-value threshold will be shown in color (MRNA in purple, protein in gold). See
Figure 34a. If all points are uncolored and there are no thresholds on the plot (as in Figure 34b),
this indicates that none your data points have p-values at a significant level.

Data points should often be fairly spread across the plot (and not clustered to one side, for
example); if not, check normalization settings and explore if there is a biological reasons for this

skewing.

Volcano Plot: BRAF.genotype: mut.mut vs.wt.wt

More Plot Information
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Figure 34: DE - Volcano Plots

In the 3D Bio Data Example (see Appendix A), the Volcano Plot for the covariate BRAF.Genotype depicts the
differential expression of genes in mut/mut samples relative to the wt/wt samples. It shows multiple p-
vaule (significance level) thresholds (Figure 34a, above). Only probes with p-values in the significant range

T
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are colored and named. Viewing this plot under the Treatment tab shows a colorless plot with no p-value
thresholds (Figure 34b), indicating Treatment did not result in signficant gene expression changes.

Significant Genes Table

The corresponding table presents the genes with the lowest p-values for differential expression with
respect to the selected covariate. The estimated log fold-change represents the average magnitude of a
gene's differential expression. Note the following:

o

For categorical covariates, a gene is estimated to have 2'°™ldchanee times jts expression in baseline
samples, holding all other variables in the analysis constant.

The 95% confidence interval for the log fold-change is also presented, along with a p-value and an
adjusted p-value or FDR if requested.

For continuous covariates, for each unit increase in the selected covariate, a gene's expression is
estimated to increase by 298 old-change f5|d holding all other variables in the analysis constant.

Log fold-change values have a slightly different interpretation for continuous variables. For
continuous variables, the fold-change must be read in the context of the range of the variable. If
the variable has a small range, a unit increase is a huge difference, and large log fold-changes are
to be expected. In contrast, if we studied the covariate “drug dose in milligrams,” we would expect
very small estimated log fold-changes, not because the drug has a small effect but because an extra
1 mg of the drug has a small effect.

DE Results: BRAF.genotype: mut.mut vs.wt.wt

More Plot Information Download CSV Data

Show Search:
10 -
Log2 std Lower Upper Linear Lower Upper
confidence confidence confidence confidence
fold Error - o fold o . P-value BY.p.value method Gene.sets probe.ID
change {og?) limit limit change limit limit
9 a (log2) (log2) g Glinear) (linear)
MAPKT- B . mRMNA, PI3K- o
mANA 303 0.0692 29 317 6.18 745 8,99 8.08e-11 521e-08  Im.nb Akt Patimway MM_138957.2:430
JAK-STAT
PIK3CD- - Signaling,
1.85 0.0456 1.78 184 38 339 3.83 1.52e-10 5.27e-08 Im.nb MM_005026.3:2978
mRNA e ® e mRNA, PI3K- -
Akt Pathway
mRNA, Other
SPP1- . . . Cytokine .
MANA 4.68 012 444 491 256 21.7 30, 207e-10 5.21e-08 Im.nb Genes, PIK- MM_000552.2:760
Akt Pathway
JAK-STAT
PIK3CB- Signaling, P
mANA 148 0.0514 138 158 278 26 2,99 2.33e-09 43907 Im.nb AN, PI3K- MM_006219.1:2945
Akt Pathway
L13mAZ JAK-STAT
mRNA B -8.25 0336 -85 -8.59 000165 0.00104 0.0026 3.25e-09 4.81e-07 Im.nb Signaling, MM_000640.2:400
mRMA
STATY JAK-STAT
mRNA‘ zm 0.0852 1.64 217 4.02 3.58 4.51 1.13e-08 142e-06  Im.nb Signaling, MM _007315.2:205
mRMNA
KEGG
Cytokines
e and Cytokine
RNA -4.75 0248 -5.23 -4.27 0.0373 0.0267 0052 5.32e-08 5.35e-06 Im.nb Receptors, MM_001562.2:48
mRNA, Other

Cytokine

Figure 35: DE - Significant Genes Table
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Differential Expression Algorithm Details

Data model

Let y; be the count of probe in sample j after
normalization to the housekeeping probes, j=1,...,J.
We assume y; is the sum of the background noise z;
and the true expression Xj, where Z; and X; follows
negative binomial (NB) distribution:

zj~NB(4p, dp),
x~NB(u;, ),
log(u;) = X[ B.

The negative binomial model contains a dispersion
parameter ¢. It accommodates the variance of probe
expression within biological replicates, which is not of
interest in differential expression (DE) analysis. When
¢ = 0, the negative binomial model reduces to the
Poisson model.

Estimation of model coefficients

Model 1: Mixture negative binomial model

Notations

}lbi

Pp:

Hj:

X7,

xT.

mean  of  background noise.
Estimated using all negative controls
in all samples.

dispersion of background noise.
Estimated using all negative controls
in all samples.

mean expression in sample j.
dispersion.

JxP matrix for the sample
annotation. P is the number of
covariates including the intercept
term. J is the number of samples.

the j™ row of XT, annotation of
sample .

Px1 matrix for the parameter.

o Parameter estimation: Let f(x|u, ¢) be the probability mass function (PMF) of the negative
binomial distribution with mean parameter u and dispersion parameter ¢. The marginal

probability mass function for y; can be derived as

Yj
p(;1%.8.0) = D (x]eXT,0) - £y = x120, )
x=0

The log likelihood function is

L= Zlog p(v;|X;. 8. ¢)
j

The parameter y and ¢ are estimated by maximum likelihood method:

B, ¢ = argmaxg 4L

This can be obtained via the MLE function in R/stats4.

o Inference and p-value calculation: If the MLE exists, the hessian matrix at MLE is evaluated:

9%L
9B op™

and the variance-covariance matrix is H=1.

The test hypothesis is:

B=5¢=2,
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HO:Bp =0vs Hl:ﬁp * 0,
where p is the index of the covariate in the design matrix.

The Wald test is conducted and the test statistic is:
By

-1
pr

S =

-

where Hyy is the p™ element on the diagonal of H~! matrix.

Model 2: Simplified negative binomial model

The complexity of algorithm in model 1 is proportional to the total count of the probe, which can result in
long computation time for probes with large counts. Model 1 can be simplified to the following form
when y; is significantly greater than the background mean Ay:

p(¥i|B.¢) = f(}’j —/1b|€XjTﬁ:¢)

The maximum likelihood estimate of 8 is then obtained using the glm.nb function in R/MASS.

Model 3: Log-linear model (linear regression)

In case the algorithms in 1 and 2 fail to converge and lead to unstable estimate of the parameters, log
transformation is taken on the counts. Assume normal distribution of the log transformed data:

log(y; — A»)~N(X[ B, 0%)

The maximum likelihood estimate of § is obtained via Im function in R.

Flow of algorithm

The flow of the algorithm works as follows: the mean of the gene across all samples is compared against
the threshold, where the threshold is 10-fold of background noise. If the gene mean is above the
threshold, the mixture model in 1 is simplified to 2. If mixed model in 1 does not converge, the simplified
model in 2 is applied instead. If model 2 does not converge, the loglinear model in 3 is used.

nanoStrinq 51



nCounter Advanced Analysis 2.0 User Manual MAN-10030-03

Mixture model

Not

Mean < threshold converge

y

Simplified model

Not
converge

3

Loglinear model

Variables

If your variable is categorical, you will be asked to assign one level of the category as the baseline or
reference level. If a category has a reference level (normal) and levels A, B, C and D as well as another
covariate, Binding Density (whether confounder or predictor), a linear regression will be run for each gene
using the following model:

E log,(expression) = B+ B, (Ia) + B,(ls) + B,(Ic) + B,(Ip) + B¢(binding.density)

Depending on each sample label (whether Normal, A, B, C or D), only one of Inormal, Ia, Is, Ic, Io will take on
value 1 and the rest will be 0. (Note that Inormal is NOt in the model and its coefficient value is absorbed by
B, term). binding.density here is a continuous variable.

Optimal Method

For each gene, the Optimal method (see the Custom Options for Differential Expression section) infers
differential expression with respect to specified covariate(s) using a negative binomial mixture model for
low expression probes or a simplified negative binomial model for high expression probes. The Fast
method uses the simplified negative binomial model for all probes. In situations of algorithm not
converging, the linear regression method will be used instead. High or low expression is determined by
how high the probe mean is across all samples relative to the negative controls. At least one covariate
must be selected as the predictor. Analysis will take into account the selected confounders but results will
only be displayed for covariates designated as predictors.

Running the Optimal model is computationally intensive and run time is proportionate to data size and
number low expression probes. It may take several 10s of minutes depending on the data size and count
distribution.
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Gene Set Analysis Module

Overview SNV Normalization Diff Expr GSA PathView Analysis Parameters Share

Gene set analysis (GSA) summarizes the change in regulation within each defined gene set (selected along
the left side of the window) relative to the baseline (or in the case of continuous variable, per unit change
in variable). The values calculated are the global significance score and the directed global significance score
and are expressed in heatmaps and/or a data table.

Before You Start GSA

Since much of GSA originates from Differential Expression Analysis, see the Before You Start Differential
Expression section.

Gene sets: ‘Global Significance Scores Directed Global Significance Scores

Summary

Cell Cycle - Apoplosis

Driver Gene

JAK-STAT Signaling

KEGG Cytokines and Cytokine
Receptors

MAPK

mRNA

Non-canonical JAK-STAT
Signaling

Other Cytokine Genes

RI3K

e e s e

PI3K-Akt Pathway

protein

et o
[T—

Ras.

Figure 36: GSA module window and options

Custom Options for GSA

There is no custom menu for GSA. The Differential Expression menu, however, features a checkbox
indicating whether to run GSA (see the Custom Options for Differential Expression section).
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Interpreting Results of GSA Plots

Summary - Global Significance Scores

Global significance scores (also called undirected global
significance scores) measure the overall differential
expression of the selected gene set relative to selected
covariates, ignoring whether each gene is up- or down-
regulated.

The chosen covariates are listed along the bottom of the
heatmap and the various genesets are listed along the
right side.

Summary — Directed Global Significance Scores

Directed global significance scores measure the extent to
which a given gene set is up- or down-regulated relative
to a given covariate. It is calculated similarly to the
undirected global significance score, but it takes the sign
of the t-statistics into account.

The chosen covariates are listed along the bottom of the
heatmap and the various genesets are listed along the
right side.

In the 3D Bio Data Example (see Appendix A),
we see that the BRAF.Genotype is associated
with more variable results among the gene sets
than Treatment (Figure 37). We can see from
the Directed Global Significance Scores plot
(Figure 38) that the P13K-Alt Pathway gene set
has the highest score in the BRAF.Genotype
category.

Global Significance Scores

More Plot Information

Figure 37: GSA - Undirected Global Significance

Scores plot

Directed Global Significance Scores

More Plot Informatior

Color Key
w05 W

Figure 38: GSA - Directed Global Significance

Scores plot
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|f Only a Single Variable is Chosen as Undirected and Directed global significance scores table
a predictor, then a table will take

the place of a heatmap, showing  show Search:

. . 10 -
values for directed and undirected
global significance. Undirected Undirected Directed Directed
BRAF.Genotypemut.mut TreatementVEM BRAF. mut T VEM
LI 5= 2015 1015 2672 -0.867
Apoptosis
Driver Gene 4298 0986 3672 -0.979
JAK-STAT 10.133 197 7442 0371
Signaling
KEGG
Cytokines and
Cyeine 6.637 1702 0967 -1.383
Receptors
MAPK 5.454 1.173 1936 -1.169
Mon-cznonical
JAK-STAT 4766 2141 2692 0613

Signaling

Figure 39: Global Significance Scores Table

Gene set of choice — covariate of choice

Selecting a pathway along the left side of the window results in volcano plot and table of values. The
volcano plot is a replicate of that drawn in the Differential Expression module, but all data points are greyed
except those in the selected pathway (those data points are colored).

Gene sets: BRAF Genotype . Treatment

differential expression
v

Summary

X Volcano Plot: BRAF.Genotype: mut.mut vs.wt.wt
Cell Cycle - Apoplosis

Selecting the P13K-Alt Pathway
. Driver Gene g pae < .
gene set results in the o DTN s conoposaerntstesprossin Wi
. . . JAK-STAT Signaling o :gj z::}ﬁz:ﬁ;g in mutmut vs. baseline of wtwt probe set
Differential Expression volcano o Oyt sty s | .
plot, overlaid with colored — e
points which reflect the probes S ——— i e
in that gene set. We can see Ot Cin Genes « B
that there are a number of P o -
probes from this gene set with S E e 2
. . Ras g . o
significant results. = RN
L
. . -‘:\L.Ei ry N
- :Eﬂ;ia
0 - L

Figure 40: GSA - Volcano plot by gene set and covariate

log2(fold change)
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GSA Algorithm Details

Differential expression analysis calculates a t-statistic for each gene against each covariate in the model. A
gene set’s global significance score for a covariate measures the cumulative evidence for the differential
expression of genes in a pathway and is calculated as the square root of the mean squared t-statistic of
genes.

» 1/2

1
global significance statistic = —Z t? ,
i=1
where t; is the t-statistic from the i" pathway gene.

The directed global significance statistic is similar to the global significance statistic, but rather than
measuring the tendency of a pathway to have differentially expressed genes, it measures the tendency to
have over- or under-expressed genes. It is calculated similarly to the undirected global significance score,
but it takes the sign of the t-statistics into account:

directed global significance statistic = sign(U)|U|/?
where U = (% b sign(t) - tlz)

and where sign(U) equals -1 if U is negative and 1 if U is positive.

A pathway with both highly up-regulated and highly down-regulated genes can have a very high global
significance statistic, but a directed global significance statistic that is relatively close to zero. The two
statistics will be equal in a pathway that contains genes regulated in only one direction.

For each gene set, the volcano plot is redrawn and table produced as described in the DE module, with the
exception that the genes in that pathway are highlighted on the plot and displayed in the table
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PathView Module

Overview SNV Normalization

Diff Expr GSA

PathView Analysis Parameters Share

The PathView module overlays the Differential Expression analysis results with various KEGG pathways.
Elements that are over-expressed in this pathway are colored gold, those that are under-expressed are

colored blue, and those that are unchanged are gray.
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Figure 41: PathView module view

Before You Start PathView

PathView plots are simply DE results overlaid with KEGG pathways. See the Before You Start Differential

Expression section.

Custom Options for PathView

There is no custom menu for PathView. The Differential Expression menu, however, features a checkbox
to choose whether to display PathView, dropdowns for how many pathways to offer and whether to color
plots by fold-change or t-statistic, as well as a box to enter a p-value threshold for plotting. See the Custom

Options for Differential Expression section.
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Interpreting Results of PathView Plots

Throughout each of the KEGG pathways offered along the left side of the window, nodes associated with
genes are colored blue if the data suggests that they are down-regulated or gold if it suggests that they are
up-regulated. The KEGG pathways listed are those with the highest level of differential expression for your
dataset; the number of top pathways offered depends on the number chosen on the Custom Analysis menu
(20 is default; see the Custom Options for Differential Expression section) and how many probes in your
dataset map to those pathways.

Note that the default p-value threshold is an un-adjusted p-value, so some colored nodes may represent
false positives. Also, before inferring significance from the abundance or paucity of differentially
expressed genes in a particular pathway, consider the percentage of genes from that pathway that are
actually represented in the CodeSet. Studying the impact of the data on the overall pathway in addition to
its effect on the individual parts results in a more holistic analysis.
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Figure 42: PathView plot

As a next step to the GSA analysis in the 3D Bio Data Example (see Appendix A), we can view the pathways
that include our gene set(s) of interest in the PathView module. Here, we select the P13K-Alt Pathway
(Figure 42) to see where our genes of interest lie in this particular pathway. Colored boxes show the
specific elements of the pathway that were differentially expressed and whether they are up- or down-
regulated in our data. If we decided to later run the Probe Descriptive module, we might enter these
genes for analysis.
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Pathway Scoring Module

Overview Normalization Pathway Score Diff Expr GSA PathView Immune Cell Type Profiling Analysis Parameters Share

Just as Differential Expression analysis of individual genes or gene sets is used to research the effect of
covariates on a dataset, the Pathway Score can be used to summarize the data from a pathway’s genes into
a single score.

At least one covariate must be chosen against which to plot the scores, while the effects of other variables
that may be highly correlated with gene expression can be removed from the analysis by adjusting the
score with respect to those variables (see the Custom Options for Pathway Scoring section). Pathway scores
are calculated as the first principal component of the pathway genes’ normalized expression.

Summary: score « | Covariates

Choose a Pathway: Heatmap of Pathway scores Heatmap of Correlation Matrix of Pathway scores

More Plot Information J Downioad Patmway sores: More Piot Information

Summary
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Figure 43: Pathway Scoring window and options

When the software generates pathway scores, there

S . . . Mor ormation The More Plot
can be some ambiguity in the directionality of those i | )
! ) Information button
scores. The software will attempt to orient them such

provides a
that increased score corresponds with increased description of the
expression in a majority of the pathway genes. In plot.

pathways where the first PC is somewhat balanced
between up-regulated and down-regulated genes,
however, the direction of the pathway score can be
somewhat unpredictable.

Download Pathway scores

The Download Pathway Scores button opens
a .csv data table that can be viewed, edited,

Like any complex statistical metric, Pathway Scores  Printed, and saved. You may also Save or

should be interpreted with caution. Although the first ~ Saveas without opening. It contains pathway
L scores for all samples and pathways.

principal component of a gene set may reflect pathway

activity or deregulation in some settings, the scores

may be confounded by biological effects (i.e.,
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proliferation or immune cell abundance) or technical effects (i.e., sample input or preparation) unrelated
to the pathway activity. For these reasons, pathway scores can be a useful tool for understanding your data
in some settings, but misleading or meaningless in others. Interpretation of scores should never be
performed without correlating them to other analysis results (such as differential expression testing), to
ensure that they are placed in the correct biological context.

Before You Start Pathway Scoring

To run the Pathway Scoring Module, you must choose Custom Analysis as your Analysis Type and check the
appropriate box on the General Options tab. Once you have done that, the Pathway Scoring tab will appear
in the list and you will be able to select it for customization (see the Custom Options for Pathway Scoring
section).

60 nanoStan



MAN-10030-03 nCounter Advanced Analysis 2.0 User Manual

Custom Options for Pathway Scoring

Your available annotations will appear on the Pathway Scoring tab. 3
Use the green arrows to move over those annotations with which
you would like to plot the Pathway Score (to the Plot Pathway
Score Vs field) and those for which you would like to adjust it (to
the Adjust Pathway Score For field). :

Adjusting for covariates removes their signal from the data before
pathway scoring is performed. To be precise, when this option is
selected, each gene will be regressed against the selected
covariates and pathway scoring will be performed on the residuals
of these regressions.

It is usually advisable to Adjust Pathway Score For various technical variables that are suspected to influence
gene expression. These may be needed to account for (e.g.) data generated by different operators, from
different labs, or using different lots of NanoString reagents. Adjusting for biological variables is a more
difficult decision. In some cases, you may want to score pathway status independent of one biological
variable to isolate the effect of another biological variable. For example, in data with multiple subtypes and
multiple treatment groups, the signal from a subtype may exceed the signal from a treatment group. In this
case, adjusting for subtype will help the pathway scores capture the effects of the treatment group. Even
if there is only one biological variable, it can sometimes make sense to adjust for it. For example, adjusting
for the treatment group can encourage pathway scores to reflect treatment-independent tumor state,

which could be desirable depending on the biological question of interest.

The question mark button
reveals additional
information.

The  exclamation  mark
button reveals an alert and a
brief explanation as to why
an option may be
unavailable (greyed out).

Probe Annotations Pathway Scoring

Available Annotations 2 Plot Pathway Scores Vs

Analysis Type

Treztment ERAF Genotype
ERAF Genotype Treztment
General Options
Mormalization Adjust Pathway Score For

Differential Expression
Pathway Scoring
Cell type Profiling
Probe Descriptive

Summary / Save Settings

Figure 44: Pathway Scoring Custom Analysis menu
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Interpreting Results of Pathway Scoring Plots

For a given pathway, PC analysis scores each sample using a linear combination (a weighted average) of its
gene expression values, weighing specific genes to capture the greatest possible variability in the data.
Thus, the first PC will reflect whatever factor(s) emerge as the main driving force of variability in gene
expression for that dataset.

Summary Plots

The Heatmap of Pathway Scores is a high-level overview of how the pathway scores change across samples.
Pathways are listed on the horizontal axis and samples are listed vertically. Using this plot, you may begin
to understand how pathway scores cluster together and which samples exhibit similar pathway score
profiles. Orange indicates high scores; blue indicates low scores. Scores are displayed on the same scale via
a Z-transformation.

Heatmap of Pathway scores

More Plot Information Download Pathway scores

In  the RNA-Protein
dataset wused in this
example (Figure 45), we

can see that the six
samples in the ’Jg?ﬂ

unstimulated group

exhibit high scores with
T-cells and B-cells, but Fryno Densiy
low scores with all -l
others. The Stimulated Treatment

. @ Unstim
group tested opposite - stim
these results.

Figure 45: Pathway Scoring - Heatmap of Pathway Scores
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The Heatmap of Correlation Matrix of Pathway SCOres  testmap of comsttion bstix ot Paiaay scores

Color Key

is a heatmap showing the correlation matrix of
pathway scores. Pathways are listed on both the
horizontal and vertical axes. Orange indicates positive
correlation, while blue indicates negative correlation.
Since the values are mirrored across the diagonal, you
may limit your observations to either the upper or
lower triangular matrix.

Similar to the previous heatmap, the RNA-
Protein dataset used in this example (Figure
46), shows that T-cell Function and B-cell

0
correlation

1

Function have negative correlations with all

other pathways but positive correlation with [

each other.

T.Cell Functions

=

|
2
3
S
£

Regulation

Regulation
TNF Superfamily

Gell Functions

Cell Cycle

Aghesion

Cytokines
Chemokines

NK Cell Functions
Leukocyte Funclions
Transporter Funetions
Antigen Processing
TR

lacrophage Functions
Senescence
Cytotoricity
Interieukins

Patnogen Defense
B-Cell Functions
T-Gell Functions

Figure 46: Pathway Scoring module - Correlation

Pathway Measurements vs. Other Pathway Scores ~ matrix of pathway scores

On the Summary tab, you may select an individual pathway of interest along the left side of the window.
This creates a collection of scatter plots, each with the selected pathway of interest on the x-axis. On each
scatter plot’s y-axis is an alternative pathway. If you have more than one covariate, you will see a scatter

plot collection for each covariate.

This combined view allows you to see how the scores for each pathway compare to scores for other
pathways and how the different experimental conditions are distributed across each comparison. You may
identify pathways with highly correlated scores in this plot, which may indicate that these are driven by
the same underlying factor(s). Others may be almost completely uncorrelated, indicating that they reflect

very different biological events.

In the RNA-Protein dataset used in this example (Figure 47), we select B-Cell Functions from the list to see
this pathway’s correlation with other pathways. As in the heatmaps, above, it shows positive correlation
with T-Cell Functions and negative correlation with all other pathways.

Choose a Pathway:

DymknE
Gt
e bk

Summary

i v . 3 -

Lodange Finisans

Eacmabage fuscka

Adhesion T ; M RPN

E-Call Funzdom B-Cal Funaizra B-Cwl Fanaizmn

E-Call Fuzcicm

Anfigen Processing . o

B-Cell Functions

WE Cairsrazrm
gty

whape Crems

Cell Cycle o

T-Cal Farctarn

1! E-Tal Turzizra B-Cal Tunzizre O-Cw| Fandizee
Cell Functions

Figure 47: Pathway Measurement vs. Other Pathway Scores

E-Esl Fuzcicr

Treatment
Unstim

 stim
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Covariates Plots

Pathway Scores vs. Covariate

Selecting the Covariate tab and the Summary of all pathways results in a plot of all pathway scores against
the covariate chosen earlier on the Custom Analysis menu (see the Custom Options for Pathway Scoring
section). There is a separate graph for each covariate; pathway scores are plotted to show how they vary

across different experimental conditions.

In the RNA-Protein dataset used in this example (Figure 48), we see that scores for T-Cell Function and B-
Cell Function increase between the unstimulated and stimulated groups, while others decrease.

Pathway scores vs. Treatment

More Plot Information

signatures
[=]
1

Adhesion

Antigen Processing
B-Cell Functions
Cell Cycle

© Cell Functions

Chemaokines
Complement

CT Antigen

Cytokines

Cytotoxicity
Interleukins

Leukocyte Functions
Macrophage Functions
Microglial Functions

* MK Cell Functions

Pathogen Defense

* Regulation

Senescence

T-Cell Functions

TLR

THF Superfamily
Transporter Functions

Unstim —

Figure 48: Pathway Scoring module - All Pathway Scores vs. covariate
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Pathway of choice vs. Covariate

Selecting the Covariate tab and a specific  B-Cell Functions pathway scores vs. Treatment
pathway along the left side of the window

results in a separate box plot for each
experimental condition. Each depicts

pathway scores on the y-axis vs. the 37 S
experimental conditions for the covariate on N

. 2 ..
the x-axis.

In the RNA-Protein dataset used in
this example (Figure 49), we select
B-Cell Functions from the list and

B-Cell Functions score
(=]
|

see, again, that the unstimulated 2
treatment group exhibits low
pathway scores (which often 37

indicates down-regulation of the
pathway) while the stimulated
treatment group exhibits elevated
pathway scores (which often
indicates up-regulation).

Unstim —
Stim

Treatment

Figure 49: Pathway Scoring module - Pathway of choice vs.
Covariate

Pathway Scoring Algorithm Details

This approach of extracting pathway-level information from a group of genes using the first principal
component (PC) of their expression data was established by Tomfohr, Lu, & Kepler in 2005.
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Probe Descriptive Module

Overview

Normalization Diff Expr GSA PathView Probe Descriptive Analysis Parameters Share

The Probe Descriptive tab provides multiple plots which are focused just on the probes of interest, which
you designate on the Custom Analysis menu. Univariate plots show the distribution of the probe results
according to the variable of choice. Correlation plots illustrate the relationship between the probes of
interest. PCA Biplots display the impact of the expression of probes of interest on the clustering of samples,
contrasting principal components (PCs) two at a time, for the variable of choice. Parallel Coordinate Plots
allow you to view the expression levels of the probes of choice; the experimental group’s results overlay
each other, each displayed in a different color. The Interaction network plot visualizes a conditional
dependency network among the selected probes that best describes the observed data. The Trend Plot
visualizes the expression trajectory of a trending variable (e.g. a patient ID, a cancer subtype) typically
across an ordinal variable (e.g. time).

7

Univariate Plots: Time

Comelalion Plots

PCA Biplots — Parallel Coordinate

Plots

Interaction Network — Trend Plois - ]

’ BCL2 ‘

CXCLS
IKBKG

IL13RAZ

JUNB
PIK3CG
PIK3R3
SPP1

VEGFA

—

Univariate Plots for Time Univariate Plots
men

Expression of BGL2

Time:

* o wmeb

Figure 50: Probe Descriptive window and options
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Before You Start Probe Descriptive

Due to the highly descriptive nature of this analysis, you may consider adding one or only a few covariates
to this analysis.

To choose probes to use for descriptive analysis:

o Runaninitial Advanced Analysis without the Probe Descriptive module so that you can identify the
most differentially expressed probes from the DE module plots and tables.

o List 5-15 probes which appeardifferentially expressed across the different groups belonging to the
annotation that you wish to analyze. Make sure your list includes genes that are both induced and
repressed.

Return to the nSolver dashboard and run a second Advanced Analysis, selecting Custom Analysis. This time,
on the General Options tab, select the Probe Descriptive box. In the Probe Descriptive module menu, enter
the probes that you identified in the first analysis and move them over to the Selected Probes window.
Select the grouping annotation(s) that you used to identify differentially expressed genes.
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Custom Options for Probe Descriptive

Use the checkboxes to search for probes of the analyte-type of interest (RNA, protein, etc). Probe names
will dynamically appear as they are typed and can be moved over to the Selected Probes field using the
green arrow buttons. You may enter up to 15 probes (if five or more are entered, PCA plots will also be
generated). Probes used as housekeepers or removed from the analysis via a low count threshold will not
be included in the output. To identify probes of interest, consult the Before You Start Probe Descriptive
section.

Move any annotations to be used in Grouping the expression data using the green arrow button. At least
one annotation must be selected.

You can check the box to Generate Trend Plots if you have covariates to designate as Interval ID and as
Series ID. The interval ID can be an ordered categorical or continuous variable. Additionally, trends across
distinct sample annotation groups can be examined by specifying an optional stratifying annotation.

o Interval ID is the variable that defines how the data points are ordered along the trend (horizontal
axis in plots). Typical covariates that would be specified as Interval IDs are Time (as in the example
below — Figure 51), Concentration, and Dosage; there should be three or more groups in this
variable.

o Series ID defines the groups into which we wish to separate the samples (for example, patient
cohorts). In general, the definition of group could extend to the case where each group consists of
only one observed entity (for example, one patient). The example below uses BRAF Genotype.

o Stratifying Annotation allows you to separate the series ID into groups to see a trend. Since we are
interested in how Treatment affects each BRAF genotype (chosen as Series ID, below), we will
select it as our stratifying annotation.

Selecting the Generate Interaction Network box generates a network that best describes the conditional
relationship between your selected probes. You can adjust for a covariate that is expected to influence
these probes. In this context, the relation between two probes is defined as their statistical dependence on
one another after accounting for their dependence on other probes.

Probe Descriptive

Search for: ¥ mRNA ¥ Protein Selected Probes
= IKBKG
MAPK1
MTOR
Probe Descriptive PIK3CD
spp1 o
Grouping Annotations ? =
Time > BRAF Genotype
Treatment = Treatment
BRAF Genotype i .
? The question mark button
¥ Generate Trend Plots ? reveals additional
Interval ID: Time M InfO rm atIOn
Series ID: BRAF Genotype v ’
Stratifying Annotation (optional) Treatment v
Generate Interaction Network ? I The eXClamatiOn ma rk

button reveals an alert and
brief explanation as to why
an option may be
unavailable (greyed out).

Figure 51: Probe Descriptive module Custom Analysis menu

68

nanoStrin

9



MAN-10030-03

nCounter Advanced Analysis 2.0 User Manual

Interpreting Results of Probe Descriptive Plots

This module provides detailed descriptive analyses of the genes of your choice. The analysis will always
include univariate plots and correlation plots. When at least 5 probes are selected, PCA biplots and parallel
coordinate plots will also be generated. Interaction network plots will be generated, if selected.
Additionally, when trending parameters (Series ID and Interval ID) are defined, you may generate trend

plots.

Univariate Plots

For categorical variables, a box plot is overlaid with a violin plot providing information on both the log;
expression quartiles as well as the estimated expression distributions for each level of the categorical
variable(s) of interest. For each box in the boxplot:

o The horizontal black line on the box plot represents the median expression.
o The box depicts the 2" quartile of expression.
o The green dots display each sample’s log, expression for the specific gene selected (on the
left).

o The grey shading represents the estimated distribution of the expression values.

Univariate Plots: Cormelation Plots PCA Biplots Parallel Coordinate Interaction Network Trend Plots

BRAF Genotype Plots

Univariate Plots for BRAF Univariate Plots

Genotype menu:

BCL2

CXCLS

IKBKG

IL13RA2

L5

[LE:]

JAKZ

JUNB

PIK3CG

PIK3R3

SPP1

VEGFA

Expression of BCL2

Expression level

whowt mut.mut
BRAF.Genotype

Figure 52: Probe Descriptive module - Univariate biplot for categorical variable
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For a continuous covariate, a scatter plot is generated, showing each sample’s normalized log, expression
level plotted relative to the continuous variable.

o The dotted line represents the least squares fit, drawn along with the 95% confidence interval (Cl).
o The green dots display each sample’s expression for the specific gene selected (on the left).

o The grey shading represents the estimated distribution of the expression values.

Univariate Plots: Time Correlation Plots . PCA Biplots - Parallel Coordinate . Interaction Network - Trend Plots -
Plots
Univariate Plots for Time Univariate Plots
mens
BCL2 Expression of BCLZ
T
CXCL5 -
IKBKG
IL13RA2 o
L
L ]
s s
L]
L
72 L2
JAKZ K
3
A [ ]
JUNB 2 [ ] .
2 ® L]
b
PIK3CG S gem-- o s
69 4 @ T T T Tt m-—=-e-___.__
PIK3R3 | T e s e »
]
. 2
SPP1 . e '
[ ]
VEGFA e ° .
L
L ]
[ ]

Time

Figure 53: Probe Descriptive module - Univariate plot for continuous variable
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Correlation Plots

The correlation plot allows visualization of two sets of information: distribution of gene expression and
correlation of gene expression. When the covariate of interest is continuous, the values are categorized into
low, average and high. Each field belongs to the gene listed at the top of its column and the gene listed on

the right side of its row.

o The distribution of expression for each gene is drawn on the diagonal (note this effectively
replicates the violin plot from the univariate analysis), segregating experimental groups belonging

to the chosen covariate by color.

o The correlation of gene expression for each pair of genes is expressed numerically in the top right
fields as the overall Pearson correlation coefficient and corresponding p-value. Pearson values of
correlation of gene expression segregating covariate groups is also given; groups are separated by

color.

o The correlation of gene expression for each pair of genes is expressed graphically in the lower left
fields, plotting the expression values and separating the groups by color.

Correlation Plots

Pairwise expression associations color-coded by BRAF. Genotype

BCL2 CXGL5 IKBKG
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Figure 54: Probe Descriptive module - correlation plots
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PCA Biplots

PCA biplots also allow visualization of the relationship between the genes chosen for probe descriptive

analysis.

Each biplot shows the spread of the probe data along a pair of principal component (PC) axes. You may
choose the PC’s of interest from the PCA Biplots menu on the left side of the window. The plot includes:

o Samples: each point in the PCA biplot corresponds to one sample. The coordinates of each point
indicate the sample’s Principal Component scores. Samples with similar Principal Component
scores have similar gene expression profiles and cluster together. Points are colored by covariate.

o Ellipses: each category of the chosen covariate is represented by a colored ellipse. This represents
the estimated region where the majority of the samples (68%) of that category type would be
expected to fall, assuming the analyzed samples represent the population well. The extent to which
the ellipses overlap indicate that gene expression differences are not enough to differentiate
among categories of the covariate. When ellipses are non-overlapping, the different categories of
the covariate of interest have distinctly different PC scores and gene expression profiles cluster the

categories apart.

o Vectors: each vector in the biplot corresponds to one gene. The direction and length of the vector
indicate how each gene contributes to the principal component. Vectors pointing in the same

direction indicate co-regulated genes.

In Figure 55, we can see that PC1 clusters
the WT (blue ellipse) and MUT (gold ellipse)
categories apart. IL-5, CXCL5, and BCL2
display long projections on PC2 and short
projections on PC1, toward either BRAF
genotype group,indicating these genes do
not have a major impact on the differences
between WT and MUT groups.

VEGFA (left) and JUNB (right) display
projections in  opposite  directions,
indicating that VEGFA is upregulated when
JUNB is downregulated, and vice versa (see
the patterns of gene expression on the
diagonal of the correlation plot).

JACK2, PICK3RR and SPP1 have long
negative projections on PC1, while IKBKG,
IL13RA2, IL8 and PIK3CG have long positive
projections on PC1, meaning that they
contribute in high degree to the clustering
apart of WT and MUT samples. Because
they display projections in opposite
directions, they have opposite patterns of
regulation (see the patterns of gene

standardized PC2 {21.3% explained var.}

expression on the diagonal of the correlation plot).

PCA: samples on 1st and 2nd PC plane
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Figure 55: Probe Descriptive module - PCA Biplot
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Parallel Coordinate Plots

These plots provide a simple way to see up/down regulation of each gene relative to the covariate of
interest. The expression is scaled for each gene across all samples.

This view lets you compare the patterns of gene expression among the different categories of the covariate
of interest. When a continuous variable is selected, its values are split into average, high and low.

Parallel coordinate plot by BRAF.Genotype

3
-
1 @= = \
’ \ l ~ probe type
RNA
S I I ) ®n
» \
§ of B .‘ 4 ‘I 7 groups
w / \ / & wtwt
\ \ I \ I mut.mut
\ / \7 N
6 ( ® é
1 O =
-2
mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA mRNA MRNA
BCL2 CXCL5 IKBKG IL13RA2 IL5 iLs JAK2 JUNB PIK3CG PIK3R3 SPP1 VEGFA

Figure 56: Probe Descriptive module - Parallel Coordinate Plot
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Trend Plot

This plot is designed to enable visualization of the change in expression levels as a function of a variable of
interest, the Interval ID, grouping your samples by a category, or Series ID (see the Custom Options for Probe
Descriptive section). You can further stratify your samples using a Stratifying Annotation.

Expression trend for A2M, CCL3, CDKN1A, GHR, IFNA7, IL12RB2 stratified by treatment
DMSO v

54

IL12RB2

Type
— mRNA

Expression (zeroed at 1st/initialtime)

0 500 1000 1500 0 500 1000 1500
Observations ordered by time

Figure 57: Probe Descriptive module - Trend Plot

The Interval ID is the variable of interest; it is typically a continuous variable such as time, concentration, or
dosage, and is plotted on the x-axis of the plot. The example in Figure 57 uses time as Interval ID (variable
designated continuous).

The Series ID defines groups such as patient cohorts (treated vs untreated) or cell lines. The example in
Figure 57 uses BRAF genotype (which correlates with cell line) as series ID.

The Stratifying Annotation separates the trend plot information into plots for each category of the
stratifying variable. The example in Figure 57 uses Treatment (DMSO as vehicle and VEM as treatment) as
the stratifying annotation.

For the settings used to create this plot, see the Custom Options for Probe Descriptive section. Each probe’s
gene expression is plotted in a single color over the interval ID variable (time) in three narrow lines,
corresponding to the three BRAF genotypes (the series ID variable). The thick line of the same color
represents the average of the expression values of the three BRAF genotypes.
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Interaction Network Plot

The interaction network plot shows the conditional dependency network among the selected probes, as
suggested by the data. This analysis is highly exploratory and is meant, primarily, to aid hypothesis
generation. Although the network inferred is the most likely network under the modeling assumptions and

based on the data provided, it may not reflect a real biological network.

An edge between two nodes implies an association between them, after accounting for the variability of
all other nodes. As with many other analyses, the inference here can be performed on data adjusted for
selected variables when the effects of those variables are to be removed from the inference. The thickness
of the edges denotes significance or confidence in the inferred edge. The color of edges captures the
direction of the effect (i.e., if the nodes have positive or negative conditional dependence). It suggests this

is the baseline interaction and matches up to known pathways.

Conditional dependencies between BCL2,CXCL5,IKBKG,IL13RA2,IL5,IL8,JAK2,JUNB,PIK3CG,PIK3R3,5PP1,VEGFA
Adjusted for: BRAF.Genotype
Edge Selection via BIC (delta BIC > 2 )

IL13RA2

JAK2 BCL2

VEGFA

PIK3CG

PIK3R3

Figure 58: Probe Descriptive module - Interaction Network plot
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Cell Type Profiling Module

Overview Nomalization Pathway Score Diff Expr GSA PathView Cell Type Profiling Probe Descriptive Related Analytes Analysis Parameters Share

This Advanced Analysis module uses the method described by Danaher (2017) to measure the abundance
of various cell populations. The method quantifies cell populations using marker genes which are expressed
stably and specifically in given cell types. These marker genes act as reference genes specific to individual
cell types, as they are expressed only in their nominal cell type, at the same level in each cell. The closer
the biomarker genes defined in the probe annotation are to this ideal scenario, the more reliable the scores.

Plots are categorized in three tabs along the top of the window: QC, Summary, and Covariates. Each tab’s
plots can be further categorized, on the left side of the window, as either a Summary or by each Cell Type.

The QC tab within this module displays p-values for correlation of marker gene expression. These p-values
should be reviewed before examining the main cell type results. Cell types with high p-values and
uncorrelated genes may still produce useful measurements, but will require more skepticism than other

Qc . Summary: Raw +  Covariates o
Choose a Cell Type: Heatmap of Raw cell type measurements Heatmap of Correlation Matrix of Raw cell type measurements
Summary
Color Key
NK CD56dim cells m
Cytotoxic cells oot ?—l
comelation ,* :|'_
re Neutopnis
Treg — wacropnages
-‘::i“m NK celis.

CD45 Cytetoie cels

Exhausted D3
Macrophages

sosis
T-cells NK COSBdIm cells

Mastcels
Mast cells oc

cpas
Neutrophils

i et
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Treg
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s
2
. Th cells ‘

Figure 59: Cell Type Profiling window and options
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Once the cell type QC plots have been reviewed, look at the cell type scores on the other tabs. Table 2 lists
ways in which to use this data and ways in which it is somewhat limited. Note that because the scores are
simple averages of marker gene expression, they convey no information about the absolute number of cells
in a sample.

Table 2: Options and limitations of Cell Type Profiling

NO - Cell Profile is average of
Calculate the number of cells in sample A expression levels, and the number of

transcripts per cell is unknown.

YES - If a cell type abundance

measurement is increased by 1
Compare a cell type's abundance between between two samples, then there is a
samples A & B two-fold increase in the number of the
cells present (abundance
measurements are in the log; space).
NO - Cell Profile is average of
expression levels for the selected
genes, so a difference in values within
a sample does not necessarily
represent a difference in cell numbers.
YES - We can claim, for example, that
Compare the ratio between two cell types the number of T-cells relative to NK

Compare the profiles of two cell types in
sample A

insample A&B cells in sample A is twice that in
sample B.

Compare profile for a cell type between two YES - The underlying assumption is

samples when one sample is from a that these are cell type-specific

different dataset reference genes

The Summary and Covariates tabs allow you to analyze both Raw and Relative cell type abundance

estimates.
o Raw cell type measurements are simple averages of the log, expression of each cell type’s marker
genes.

O Relative measurements are calculated as contrasts between raw measurements. This may be
useful since the abundance of most cell types might be highly correlated with the tumors’ variable
amounts of total infiltrate. Relative profiles better reveal differences in the composition of that
infiltrate. Also, in PBMCs and other samples where tumor cells do not provide the majority of RNA,
relative measurements can be much cleaner and easier to interpret than raw measurements.

Before You Start Cell Type Profiling
This module will only run with CodeSets in which a significant proportion of their genes are cell-type genes.

To run the Cell Type Profiling module, you must choose Custom Analysis as your Analysis Type and check
the appropriate box on the General Options tab. Once you have done that, the Cell Type Profiling tab will
appear in the list and you will be able to select it for customization (see the Custom Options for Cell Type
Profiling section).
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Custom Options for Cell Type Profiling

Your available sample annotations (covariates) will appear in the

. . ) 2 The question mark button
Available Anngtatlons field. Use t.he gregn arrows to move over reveals additional
those annotations (at least one is required) that you want to - —
examine in Cell Type Profiling.

The CodeSet’s probe annotation file will designate which genes ! The  exclamation  mark

button reveals an alert and
brief explanation as to why
an option may be
unavailable (greyed out).

are cell type specific markers using the column with header
“Cell.type”. In addition, gene lists can be created by modifying the
probe annotation file. To specify the cell types’ characteristic
probes (markers) select either Use Default(cell.type) or designate
a Custom column. See the Creating Probe Annotations for Custom
CodeSet Data section.

In Creating Signatures, the Dynamically Select a Subset option will reject genes that do not behave like
marker genes (genes which are poorly correlated with the other markers for the cell type; see Danaher
2017 for details). These will appear with the word “discarded” underneath in some plots (see the QC Plot
for Cell Type Measurements of Choice section). The Use All Probes setting bypasses this QC step and retains
all genes, regardless of whether they display cell type specific correlated expression.

Probe Annotations Cell type Profiling

Available Annotations 2 Selected Annotations
Analwei v
Analysis Type Treatment a BRAF Genotype

BRAF Genotype B Treatment

General Options

Normalization Column Specifying the Cell Types’ Characteristic Probes 2
* Use Default (Cell. Type) Custom

Differential Expression Creating Signatures: ?

Use All Probes ' Dynamically Select 2 Subset

Pathway Scoring P-value Threshold for Reporting Cell Type Abundance: 2
* Display All Cell Types Custom 1

cell type Profiling Show Results for: ?
#| Raw Cell Type Abundance

Probe Descriptive #| Relative Cell Type Abundance

Cell Type Contrasts:

* )
e e Use Defaults Upload Your Own

Figure 60: Cell Type Profiling custom options menu
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The software tests each cell type’s marker genes for better-than-random marker-like co-expression
(Danaher 2017) and returns a p-value for each cell type score. The P-value Threshold defines the
significance threshold for reporting a cell type abundance estimate.

O

By default, the module will display all, returning results for all cell types regardless of their p-value.
This setting may be desirable since gene sets with high p-values may still be useful: even if your
dataset does not provide high confidence values, the results of previous authors provide enough
evidence to make their use a reasonable choice.

Alternatively, you may choose Custom and enter a value of 0.05 or lower to see results (and
calculate relative cell scores, see below) only for cell types whose quantification is further
supported by your data. Cell types whose evidence for cell type-specific expression does not meet
this level of confidence will be discarded.

Show Results for allows choices in how results are displayed:

(0]

Raw cell type abundance shows the estimated abundances of each individual cell type. Abundance
estimates are given on the log, scale, so a unit increase in score corresponds to a doubling of a cell
type’s abundance. As each abundance estimate is simply the average of the log, counts of chosen
characteristic genes (cell.type genes), these estimates do not support claims about whether one
cell type is more abundant than another. Rather, they permit claims that a cell type is more
abundant in one sample than in another.

Relative cell type abundances show contrasts between pairs of cell types. For example, rather than
measuring CD8 T cell abundance, a relative cell type score measures CD8 abundance relative to
overall T cell abundance. A relative abundance measurement is especially useful in a sample
comprised of a heterogeneous mix of cell types such as PBMCs.

Contrasts are ratios of the cell type scores in the form of cell type 1/cell type 2. They will only be
displayed if a cell type profile is generated for both the numerator and the denominator. If you
wish to upload your own cell type contrasts, you can generate a contrast matrix using a template
similar to that shown in Figure 61 and save it as a .csv. You can then select the Upload Your Own
option on the Custom Analysis menu and Choose File. See Cell Type Profiling Algorithm Details for
more information.

A B i D E F G H | J K L M

B-cells Cytotoxic DCws. Exhauste Macroph  Mast  Meutrop MK MK cells  T-cells  Thilcells

. cD56dim

Total TiLs cells vs. dCDBvs. agesvs. cellsvs.  hilsvs.

cells vs.
1 vs. TILs TILs TILs TILs TILs TILs TiLs TILs vs. TILs | wvs.TILs  vs. TiLs
2 |B-cells 0.2 0.8 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.]
3 CD45 0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.]
4 | Cytotoxic 0.2 -0.2 0.8 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.]
5 |DC o 0 0 1 0 0 o 0 0 0 0] |
6 |Exhaustec ] 0 0 0 1 0 0 1] o o 0 |
7 |Macropha 0.2 -0.2 -0.2 -0.2 -0.2 0.8 -0.2 -0.2 -0.2 -0.2 -0.2 -0.]
8 Mastcells ] 0 0 0 0 0 1 0 0 0 0] |
9 |Neutroph 0 0 0 0 0 0 0 ' 0 ] i
10 |NK CD56d o 0 0 0 0 0 ] 0 1 o 1] |
11 |NK cells o 0 0 0 0 0 0 0 0 1 o l
12 T-cells 0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.2 -0.2 0.2 0.8 0.

12 [Thi rells n n n n n n n n n n n

Figure 61: Custom cell type contrast matrix file
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Interpreting Results of Cell Type Profiling Plots
QC Plots
Barplot of p-values across cell types

p-values from the test for marker-like co-expression are
-logio transformed. Bars above the solid black line
indicate statistically significant cell types at a p-value
threshold of 0.01. Bars above the dashed black line
indicate statistically significant cell types at a p-value
threshold of 0.001.

In the RNA-Protein dataset used in this example (Figure
62), Neutrophils and Cytotoxic Cells are the cell types
with the most significant p-values.

QC Plot for Cell Type Measurements of choice

Barplot of p-values across cell types

More Plot Information

— palue<0.01
-~ pealue =0.001

-log10ip-value)
™

D
Treg

Cytotoxic cells

NK CD56dimcells

Figure 62: Cell Type Profiling module - QC barplot
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CDB Teells

Stable cell type-specific expression of biomarkers allows us to score the cell type’s abundances simply by
taking the average log, expression of its characteristic genes. Selecting the cell type of choice from the left

side of the window allows you to view the
normalized expression of the genes found to be
characteristic of that cell type. If a cell type's
characteristic genes are specific to the cell type and
stably expressed within it, they will be strongly
correlated with a slope of 1. Substantial departures
from this pattern indicate noisier quantification of
cell type abundance. The resulting image (Figure 63)
plots each cell’s results vs. another twice (once on
one side of the diagonal and once on the other). The
boxes on the diagonal each contain a cell name; all
plots in the same row will have this cell on their y-
axis and all plots in the same column will have this
cell on their x-axis. “Discarded” under the cell name
indicates that the correlation between cell types
was so poor that they qualified to be dropped.

In the RNA-Protein dataset used in this example
(Figure 63), SH2D1A and CD3D have the best
correlation; CD3E (both mRNA and protein) are so
poor, they are discarded.
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Figure 63: Cell Type Profiling module - QC cell type
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Summary Plots

The summary plots can be viewed for raw or relative data. The summary plots can be viewed for raw or
relative data. Each relative abundance score gives a contrast between cell types’ measurements. The Total
TILs score is defined as the average of the B cell, T cell, CD45, Macrophage and Cytotoxic cell scores. Other
relative abundance scores are calculated by subtracting the total TILs score from a single cell type score.
For example, the NK cells vs. TILs score is the NK cell score minus the total TILs score.

Heatmap of Raw cell type measurements

More Plot Information Downlead raw cell type measurements

The heatmap of raw (or relative) cell type
measurements is a descriptive plot showing the
abundance of different cell types. Cell types are
listed on the horizontal axis and samples are listed
vertically. Orange indicates high abundance whereas
blue indicates low abundance. This method does not
support comparisons of different cell types. Rather,
it supports comparisons of abundance of the same
cell type between samples.

Treatmeant
unstim
slim

In the RNA-Protein dataset used in this
example, we can see that the first six
samples (the unstimulated group) display a
high abundance of several cell type groups
where samples 7-12 (the stimulated group)
have a low abundance. T-Cells and CD8 T-
Cells show the opposite: these groups had
low results in the unstimulated samples and
higher in the stimulated group.

Figure 64: Cell Type Profiling module - cell type heatmap

Heatmap of Correlation Matrix of Raw cell type measurements

The heatmap of correlation matrix of raw (or relative)

cell type measurements shows the correlation IW;MI

between different cell types. Cell types are listed on e J:?_l

both the horizontal and vertical axes. Gold shows e [ =

highly correlated cell types and blue shows highly anti-
correlated cell types.

HIK COS6Im cells

In the RNA-Protein dataset used in this
example, we can see that while most of the
cell types are highly correlated, T-Cell groups
are anti-correlated with them.

Mast cells

wwwwww

NK CO56dim o

Figure 65: Cell Type Profiling module - cell type correlation
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Raw (or relative) cell type measurements vs. other cell type measurements, by covariate

By clicking on a tab for a specific cell type, we can more closely examine its behavior relative to other cell
types or cell type ratios.

®
a & ®
5 6e ¢
E
5 & ¢ .
] 5 *
o 62
o ..
¥ 61
= L J
60 &
78 a0 82 &4 36
T-cells
0
8
4
£ &
a
o
S 4
5
o
z 2
Q
75 80 82 84 386
T-cells
[ ]
84
*
o 83 ® 9
H * -
E %27 e
81
0. ™
T

T-cells

NK cels Cytotoxic cells

CDB T cels

[ L]
& 75 o o
ooy °, ** 75 1% e
a0 1 - o 70
£
85 a 65
2 w0 2
S 5 60
80 9 = -
s - g 55 Treatment
® nstim
75 - ® 50 -] m
e o o it a8 - "
T T T T T 3T T T T T
73 a0 82 a4 86 73 a0 8z &4 86 78 80 8z 384 a6
T-cells T-cells T-cells
70 a4 ®
o' 35
@
55 ] S e
- o 2 .. |
80 TR = 82 .ﬂ.
@ L ° - i
55 3 @ 80 o,
&0 £ a0 * 75 o®
4 3 e
45 e 7
T T T T .I 53 _l — T T T T T .l T T T
78 80 82 &4 85 78 80 82 &84 85 78 80 82 84 86
T-cells T-cells T-cells
95 ¢
96 [
., %
294
@
924 &
i
&
80 = T T T T
78 80 82 &4 85
T-cells

Figure 66: Cell Type Profiling module - cell type measurements, compared

In the RNA-Protein dataset used in this example, we have chosen T-Cells from the tab from the left side of
the window. These cells’ scores are plotted against each other cell score, colored by treatment. We can
see separation between stimulated and unstimulated samples in all plots.
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Covariates Plots

The raw (or relative) cell type measurements vs. covariate plots the cell type abundance measurements

against each selected covariate.

In the RNA-Protein
dataset used in this
example, we can visualize
the change in expression
between one
experimental group and
the other for each cell
type. As we saw in the QC
barplot, Neutrophils had
the biggest change
between the
unstimulated and the
stimulated states.

With raw (or relative) cell type measurements vs.

Raw cell type measurements vs. Treatment

More Plot Information

Celltype scores (centered)

o

NK CD56dim cells
Cytotoxic cells
[alo]

== Treg

—* CD45
Macrophages

— T-cells

= = Mastcells
Meutrophils

©~ HNKcells
Exhausted CD8
B-cells

— Thicells

— = CDE&Tcels

unstim =

stim - ¢

Figure 67: Cell Type Profiling module - cell type measurement by covariate

T-cells Measurement vs. Treatment

covariate, we can examine the relationship between cell
populations and selected covariates. Each cell type’s
score has been centered to have mean 0. As abundance
estimates (cell type scores) are calculated in log; scale, an

increase of 1 on the vertical axis corresponds to a

doubling in abundance.

T-cells score

In the RNA-Protein dataset used in this example,
we can see the difference between the
unstimulated samples’ T-cell scores and those of
the stimulated samples.

9.0 1

a0

7.0

Unstim —

Stim

Figure 68: Cell Type Profiling module - cell type

Vs covariate
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Cell Type Profiling Algorithm Details

A cell type’s abundance can be measured as the average log-scale expression of its characteristic
genes. The algorithm used to identify appropriate marker genes and exclude badly-behaving cell
type-specific genes from estimates of cell type abundance is detailed below, as is the permutation
test used to derive a p-value assessing a cell type’s marker genes. Automatic Screening of Failed

Cell Type-specific Genes

First, we define a similarity metric between two candidate cell type-specific genes. Under the assumption
that both genes are specific to the same cell type and consistently expressed within it, they will be highly
correlated with a slope of 1. To measure two gene’s adherence to this pattern, we employ a slightly
modified version of Pearson’s correlation metric:

X(x-0)(y-y)
(n-1)
2

similarity(x,y) = ,
y( y) (var(x)+var(y))

where x and y are the vectors of log-transformed, normalized expression values of the two genes, X and y
are their sample means, and var(x) and var(y) are their sample variances. The similarity() function equals 1
when the two genes are perfectly correlated with slope of 1 and decreases for gene pairs with low
correlation or slope diverging from 1. Since many biologically related genes will exhibit correlation
unrelated to a shared cell type, it is important to apply a more stringent measure of similarity than mere
correlation.

Our gene selection algorithm is as follows. Assume there are p genes and n samples.
1. Use the similarity function to compute a p*p similarity matrix amongst the genes. Each gene has
similarity of 1 with itself.

2. Label all gene pairs with similarity below 0.2 as “discordant.”

3. Iteratively remove genes: while there are more than 2 genes remaining and while at least one
discordant pair of genes remains:

a. Countthe number of discordant pairs each gene participates in. Call the maximum of these
counts n_discord.

b. Identify the genes with n_discord instances of discordance with another gene. Of these
genes, remove the single gene with the lowest average similarity to the other remaining
genes.

The above process is similar to the geNorm algorithm. This similarity is not a coincidence, as cell type
markers genes can be thought of cell type-specific “housekeeper” genes.
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Calculation of p-values for Cell Type Gene Sets
We test the null hypothesis that the given gene set exhibits no greater cell type-specific-like behavior than
a randomly selected gene set of similar size.
First, we require a metric of a gene set’s adherence to the assumption of cell type-specific and consistent
expression.
1 _1 _1 _1 _NT

concordance(X) = pr—r—— (p 2,.,p 2) Cov(X) (p 2, ..,p 2) ,
where X is the matrix of log-transformed, normalized expression values of the gene set, and where p is the
number of genes. The concordance() function evaluates at 1 if all genes are perfectly correlated with a
slope of 1, and degrades to O as this pattern weakens.
We perform our permutation test as follows. Assume the given gene set has p genes, of which pO survived
the iterative gene selection procedure. Call the data from the gene set X, and the data from the reduced
gene set XO.

1. Compute concordance(Xo).
2. Choose 1000 random genes sets of size p. Denote the data from a random gene set X’.

3. Foreach gene set, apply the criteria of the gene selection algorithm to reduce X’ to only its best po
genes. Call the data from this reduced random gene set Xy’, and compute concordance(Xy’).

4. Return a p-value equal to the proportion of concordance(Xy’) values greater than concordance(Xo).

Also note that there are 3 single-gene cell type scores. These scores cannot be tested with this method;
however, the genes in question (CD45 for CD45 cells, Tbx21 (T-bet) for Th1 cells, and FOXP3 for Tregs) are
well-characterized.

Cell Type Contrast Matrix File
To generate TIL cell scores using a custom matrix file, the Advanced Analysis Cell Type Profiling module
does the following:

1. It calculates raw cell scores as mean log, normalized counts of cell type specific markers. Genes
included to generate the scores must be those that correlate and behave as cell markers
(Danaher, 2017).

2. ltcorrelates all cell type scores vs CD45 scores using the PEARSON equation. The cell scores with
correlation coefficients >0.6 will be used to average and get TIL scores.

3. It normalizes raw cell scores to TIL scores.
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Here is an example of steps 2 and 3 using 5 cell populations to generate TIL scores: B cells, CD45+ lymphocytes,
Cytotoxic T cells, Macrophages and T cells:

Column B in the contrast matrix will be used by nSolver to generate a TIL cell score as the average of (in this example)
5 cell populations highlighted in red (B cells, CD45+ lymphocytes, Cytotoxic T cells, Macrophages and T cells).

+ .
TIL _ Beell scoretCD45 g1 score T CYtOtOXiCcel) scoretMacrophage el scoretTcell score (Eq 1)
score —
5

This equation is equivalent to:

TlLgcore = 0.2XBeeq score + 0-2XCD4A5F, 1 < ore + 0.2XCytotoXiceey score + 0-2XxMacrophage ey score +
0.2xTeen score (EQ 2)

The coefficients of the scores in the second equation are annotated in the table (see the Custom Options for Cell Type
Profiling section, Figure 61), column B (in red).

Column Cis used by Advanced Analysis to generate a contrast ratio of B cells, relative to TIL. In linear space :

Beells relative to TIL = —cellscore (g 3)

TILscore

This equation is equivalent to:

1XBcell score
0.2xBeep score + 0.2XCD457 + 0.2xCytotoXiCee)p score + 0.2xMacrophage ey score + 0-2XTeel] score

cell score

To annotate this equation on the contrast matrix, we use positive coefficients for scores in the numerator, and
negative coefficients for scores in the denominator. Since B cell scores appear in both the numerator and
denominator, the coefficient will be the sum of the coefficients. For this example: 1 — 0.2 = 0.8.
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Related Analytes Module

This module enables comparison of expression levels within pairs of probes that have been linked in the
probe annotation file. Pairs such as mRNA-Protein or Total Protein-Phosphorylated Protein may already be
linked in some files. This module applies all the tools of the Probe Descriptive Module to each pair of related
analytes. It is especially useful for describing the co-regulation of Protein and mRNA counterparts or of
Phosphorylated isoforms.

Comelation Plots: - Trend Plots v
Treatment

Carrelation Plots for Treatment menu: Correlation Plots

BTLA
Pairwise expression associations colorcoded by Treatment

cors oot
cD14 ol RNA

bl
103

IL2R
cDiz7

KIRADL1

NKP46
84 E 22 38 ars 70

Figure 69: Related Analytes view and options

Before You Start Related Analytes

The CodeSet’s probe annotation file will designate which mRNA markers are related to which proteins. To
specify or modify these relationships, use the Related.Probes column in the probe annotation file. For any
probe of interest, enter the probe ID of its related counterpart in the Related.Probes column, and vice
versa. In this way, you can link any two probes to look at pairs of mRNA probes for splice variants or pairs
of Protein probes (phosphorylated:non-phosphorylated). See the Creating Probe Annotations for Custom
CodeSet Data section.
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Custom Options for Related Analytes

The Related Analytes menu allows you to Select Probe Pairs for
analysis. The options provided are mRNA and Protein probe pairs
that have been defined as related in the Related.Analyte column
of Probe Annotations file. Select the pairs of interest from the field
on the left and move them to the field on the right with the green
arrow button. At least one must be selected

The output graphs will be colored by the categories selected in the
Grouping Annotations field (for continuous variables, Low,
Medium, and High subsets will be computed). Move the
annotation(s) desired from the left field to the right using the
green arrow button.

The question mark button
reveals additional
information.

The  exclamation  mark
button reveals an alert and
brief explanation as to why
an option may be
unavailable (greyed out).

You can check the box to Generate Trend Plots if you have covariates to designate as Interval ID and as
Series ID. The interval ID can be an ordered categorical or continuous variable. Additionally, trends across
distinct sample annotation groups can be examined by specifying an optional stratifying annotation.

o

Interval ID is the variable that defines how the data points are ordered along the trend (horizontal
axis in plots). Typical covariates that would be specified as Interval IDs are Time (as in the example
below — Figure 70), Concentration, and Dosage; there should be three or more groups in this
variable.

Series ID defines the groups into which we wish to separate the samples (for example, patient
cohorts). In general, the definition of group could extend to the case where each group consists of
only one observed entity (for example, one patient). The example below uses BRAF Genotype.
Stratifying Annotation allows you to separate the series ID into groups to see a trend. Since we are
interested in how Treatment affects each BRAF genotype (chosen as Series ID, below), we will
select it as our stratifying annotation.

Analysis Type Related Amlytes
Select Probe Pairs 7
4E-BP1 : Phospho4E-BP1 Thi?
EGF Receptor : Phospho-EGF R
Pan-Akt : Phospho-Akt Ser473
Phospho-GSK-3B Ser9 : GSK-3i
Sﬁ}RibasomaI Prqtein : Phogph -

Geners Opong 4E-BP1 : Phospho-4E-BP1 Th:
EGF Receptor : Phospho-EGF R
Pan-Akt : Phospho-Akt Ser473
Phospho-GSK-3B Ser9 : GSK-3E
S6 Ribosomal Protein : Phosph «

Probe Descriptive

Grouping Annotations :

Time > BRAF Genotype
Treatment Treatment
BRAF Genotype

Related Analytes

Summary / Save Settings

¥ Generate Trend Plots

Interval ID: Time hd
Series ID: ERAF Genotype v

Stratifying Annotation (optional): Treatment v

Figure 70: Related Analytes custom analysis menu
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Interpreting Results of Related Analytes Plots

Correlation Plots

The correlation plot allows visualization of two sets of information: distribution of gene expression and
correlation of gene expression. When the covariate of interest is continuous, the values are categorized into
low, average and high. Each field belongs to the gene listed at the top of its column and the gene listed on
the right side of its row.

o The distribution of expression for each gene is drawn on the diagonal, segregating experimental
groups belonging to the chosen covariate by color.

o The correlation of gene expression for each pair of genes is expressed numerically in the top right
field as the overall Pearson correlation coefficient and the p-value. Correlation of gene expression
segregating covariate groups is also given; groups are separated by color.

o The correlation of gene expression for each pair of genes is expressed graphically in the lower left
field, plotting the expression values and separating the groups by color.

Pairwise expression associations color-coded by Treatment

ETLA BTA
protein mRNA

g
L8

WNHW
At

Figure 71: Related Analytes module — Correlations Plot
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Trend Plots

This plot is designed to enable tracing of the change in expression levels of the related probes of a sub-
category of the variable of interest. Examples of this sub-category could be individual patients, a cell line,
or a patient cohort and the variable of interest is (typically) time, concentration, dosage, or order of
observation. Choose the probe-pair of interest from the tabs on the left.

Expression trend for Phospho-4E-BP1 Thr37/48, 4E-BP1 stratified by Treatment

DMso

VEM

0.0- 48

Exprassicn (Zeroed at 1stinitial Time)

& 8 oz 03 1 8 8
Observations ardered by Time

Figure 72: Related Analytes module - Trend Plot

In the example in Figure 72, we see Trend plots, stratified by Treatment type. For the settings used to create
this plot, see the Custom Options for Related Analytes section. Time is the Interval ID, which establishes the
x-axis. Each probe’s expression is plotted in a single color over time in three lines. The narrow lines
represent each category of the variable set as the Series ID (in this case, BRAF genotype); the thick line
represents the average of these values. We can see that all probes responded similarly over time in the

DMSO (control) group.
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SNV Module

SNV

Fusion

Diff Expr Analysis Parameters Share

The SNV Module summarizes SNV variant events detected in the data through three different types of plots.

From the Overview tab, you can choose between the Sample Probe Matrix or the Quality Map. The Sample
Probe Matrix indicates sites which have tested positive for a variant. The Quality map displays the raw

counts of the control probes for each sample in the dataset.

The By Samples tab allows you to view sample-specific boxplots of the log, ratio of counts for each variant

probe compared to reference data.

Owverview: sample — By Samples
probe matrix

SNV call summary

20170 T_SNP-DV2-140-G2-330-C4_FH-WW1 B150001547_12 RCC-
20170117_SMP-DV2-140-G2-330-C4_FH-vv1 B120001517_11.RCC=

20170117 _SMP-DV2-140-G2-330-C4_FH-ULM B150001509_10 RCC - l

20170117_SMP-0V2-140-G2-330-C4_FH-TT1 B150001502_08 RCC-
201707 _EMP-DV2-140-G2-330-C4_FH-551 B150001491_08 RCC-
20170117 _SNP-DV2-140-G2-330-C4_FH-RR1 B150001490_07 RCC-
20170117_SMP-DV2-140-G2-330-C4_FH-001 B150001488_06.RCC -
ZT0NT_SNP-DV2-140-G2-320-C4_FH-PP1 B150001450_J5REC-
20170117 _SMNP-DVZ-140-GZ2-330-C4_FH-001 B150001358_04 RCC -
20170117 _SHP-DV2-140-G2-330-C4_FH-MN1 B150001 340_03 RCC- .
20170117 _SMP-DV2-140-G2-330-C4_FH-MM1 E150001326_02 RCC-
20170117_5MP-ON2-140-G2-330-C4_FH-LL1 B150001238_01 RCC-
20170117_SNP-DV2-140-GZ-230-C3_FH-Z1 B140001275_01.RCC-
Z01T01T7_SMP-DV2-140-G2-330-C3_FH-KK1 B150001235_12.ACC-
20170117 _SMP-DV2-140-G2-330-C3_FH-JJ1 B150001221_11.RCC-
20170117 _EMP-DV2-140-G2-330-C3_FH- 111 B150001205_10.RCC-
20170117 _SNP-DV2-140-G2-330-C3_FH-HH1 B150001200_09 RCC-

20170117 _EMP-DV2-140-G2-330-C3_FH-GG1 B150000039_08.RCC - l

20170117 _SMP-DNVE2-140-G2-330-C3_FH-FF1 B140002451_07 ROC-
20170117_SHP-DV2-140-G2-330-C3_FH-EE1 B140002445_06 RCC-
20170117 _SHP-DV2-140-G2-330-C3_FH-DD 1 B140002436_05RCC- .
20170117 _SMP-DV2-140-G2-330-C3_FH-CC1 B140001390_04 RCC-
Z0170117_SMP-DY2-140-G2-330-C3_FH-BB1 B140001383_03 RCC-
E0170117_SNP-DV2-140-GZ2-330-C3_FH-AAT B140001377_02RCC -
20170117 _SNP-0V2-140-G2-330-C2_FH-L1 B14000104E_12 RCC -
20170117 _SNP-DV2-140-G2-330-C2_FH-K1 B140001021_11.RCC-
20170117_SNP-DW2-140-G2-330-C2_FH-J1 E140000892_10.RCC- l
20170117 _SNP-DV2-140-G2-330-C2_FH-11 B140000855_09 RCC-

Samples

Figure 73: SNV module view and options
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Before You Start SNV

SNV analysis requires a set of SNV references to establish a baseline for variant calls. This reference set can
be run on a different RLF but should use the same type of unique identifier as the sample set (i.e., if the
Description column is used to document shorter sample names for the sample set, you must enter unique
same names in the SNV reference set’s Description column, as well).

Potential Cross-Hybridization Interactions

Due to the complex, competitive hybridizations that form the foundation of SNV chemistry, there are
certain assays that, in order to ensure sensitivity down to 5% allele frequency, may also have affinity for
other variant sequences in the assay. These interactions can result in false-positive calls among related
probes assaying the same hotspot regions in the genome. Known potential variant cross-hybs are listed in
the tables below. Exercise caution when analyzing data that shows positive results in these pairs of assays.
The strongest call will likely be the assay listed in the “...\When True Positive Present” column, and a weaker,
secondary call may appear for the assay listed in the column “Putative False Positive...”

For example, in the Heme panel, when CSF1IR COSM947 (Y969C) is present, you have a low chance that
CSF1R COSM948 (Y969F) calls will be falsely elevated.

Table 3: Heme Panel Potential Hybridization Pairs
Putative False Positive...

Probability

...When True Positive Present

IDH1 COSM28748 (R132S) IDH1 COSM28749 (R132G) Medium
IDH2 COSM41875 (R140L) IDH2 COSM41590 (R140Q) Medium
KIT COSM1310 (D816Y) KIT COSM1311 (D816H) High
KIT COSM1311 (D816H) KIT COSM1310 (D816Y) Medium
KRAS COSM512 (G12F) KRAS COSM516 (G12C) Medium
KRAS COSM512 (G12F) KRAS COSM520 (G12V) Medium
Table 4: Solid Tumor Panel Potential Hybridization Pairs
Putative False Positive... ...When True Positive Present Probability

MAN-10030-03

EGFR COSM12370 (L747_P753>S) EGFR COSM12369 (L747_T751delLREAT) High
EGFR COSM12370 (L747_P753>S) EGFR COSM6255 (L747_S752delLREATS) High
EGFR COSM12384 (E746_S752>V) EGFR COSM12416 (E746_T751>VA) High
EGFR COSM6223 (E746_A750delELREA) EGFR COSM6225 (E746_A750delELREA) High
EGFR COSM6255 (L747_S752delLREATS) EGFR COSM12382 (L747_A750>P) High
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Custom Options for SNV

There is no SNV custom options menu, however, the General Options menu will include a Specify SNV
Parameters button if it detects SNV data in the set. This button allows you to designate the reference
samples, adjust the minimum fold change, and adjust the p-value to modulate SNV calling stringency.

You may select Quick Analysis and choose one covariate from the dropdown for analysis.

Alternatively, you may select Custom Analysis if you would like to run a multi-RLF analysis, choose multiple
covariates, or customize your analysis in another way. The General Options tab will appear (see Figure 74).

Select the SNV Analysis Parameters button to reassign SNV References by covariate type (the default is /s
Reference, referring to the assignment made during nSolver experiment creation) or by file name (manual
selection). You may adjust the parameters defining the reference thresholds (Detected and Not Detected),
based on number of log, fold changes (log,FC) and p-value, however, ensure these values are not identical.
The algorithm is not designed for a dichotomous output and will reset to default values if it does not detect
a lower log,FC threshold for the Not detected setting.

By default, the EM (expectation maximization) and Debias boxes are checked. In most circumstances, you
won’t need to deviate from this default. If, however, you are troubleshooting unexpected results, check
one of these boxes off at a time and view this effect on your data. EM facilitates the borrowing of
information from sample- to-sample; this is a useful model, but if one of the samples is of poor quality, you
may need to check this option off to keep this sample from impacting the others. Debiasing is a by-sample

bias removal procedure.

Experiment Type: 2
®  Standard MultiRLF Merge (standard experiments merged)

Choose additional image types to create: ?

General Options
Summary / Save Settings
None A

¥l Omit Low Count Data 2

-
Select SNV Reference Sample And Threshold Settings For Variant Call

® Choose Covarizte Defining Reference Samples

r

Is Reference v

Choose File Name(s)

Detected: logaFC = 2 and p-value .01 and raw count is zbove threshald
Mot Detected:  logaFC < 1 orp-value | .01 or raw count is below threshold

¥ EM # Debias

Figure 74: Windows associated with SNV custom analysis options - General Options menu
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Interpreting Results of SNV Plots

Overview Sample Probe matrix

This plot shows the samples and probes where SNVs were called. The legend below the plot details
the rules for calling SNVs from raw counts, p-values and fold-changes above expected background.

1TDHT_SNPOVZ-140.02 350-G3_Fria1 BIIEONR21
Z017I1T_SHP-DV2-140-G3-330.C_FFI1 B15301205_10.

Samples.

FETTATIT_SNRLDVI-14E-G2II0C2_FH-KT 8143003487

O1TLHT_SNP-DVI-H0-G2.350-C2_FHB1 B 14200006002
SO1TEHT_SNP-DVE- WO-G2IS0-C2_FHad B130000420_01.
SO1TEH3_SNP DV2-WO-G2 I50C1_FHY B140001273_12.
SO1TEH 3 SN D2 140-G2 350 C1_FHX1 B14001268_11.

20170113 SNP.OV2-140.52.330-61_FHW1 BI4DO1262_10.
IO17EH2_SHP.DVE-140.G2 0.C1_FHA BI4D01231_t8.
IEITATNI_SNPLDVEAUEGRIDCI_FHL BI4T01202_08
20170113 SHP-OV2-14052-330-C1_FHT1 BII01150_87.
IOITEH 1SN OVE-140.G2 150 C1_FHE1 B HI01175_IS
IETUINI_ENP-DVE14E-GLID CI_FH1 BI001157_G5
20170113 5P 0Y2-140.62.330.G1_FH 1 BU4301135_64.
201701 13_SNP.0Y2-140.62.350.61_FH.G1 B 430106553,
2617T1_SNPDV2-1E-G2I-C1_FHNT BUI01062_02.
Z0170113_SNP-DVE-140-G2-330-C1_FHM1 B140001051_D1RCE-

20170117_SNP-DVZ160-52330.C3_FH-BE1 B 3001383 03

20170117_SNP-DVZ 160-G2330.C3_FH-AAT BIIOOTITT_G2.
0170117_SNP DV 140.G2-380.C2_FHL B142001048_52.
S1TENN7_SH DV 140.G2 320.C2_FHICT 8140001021
01701 17_SP-OVE140.G2-20.C2_FH1 81420038821
201T6117_SNF.DV2-140.02.350.C2_FHi1 8143000885 68,

SNV call summary

“No: log2(fc) < 1 or raw count < 100 or 0.01 < p value
= Undetected - 1 < log2(fc) < 2 or 100 < raw count < 200 and p value <0.01
1 Yes : 2 <Iog2(fc) and 200 < raw count and p value < 0,01

Figure 75: SNV module - Overview plot

In the 3D Bio Data Example
(see Appendix A), the SNV
call summary gives a clear
depiction of the SNV calls
made in this data. Results
are as expected: SKMEL28
samples all exhibited variant
calls in the BRAF gene, while
SKMEL2 samples all exhibited
variant calls in the NRAS
gene.

Overview sample By Samples .
probe matrix

SUCLETSh A S0re

SRz OHE M o

AL B sh oG

SHHELLDUE02h

SEL2 DS

S s

7 No: log2(fe) < 1 or raw count <100 or 0.01 < p value
= Undetected : 1 <Iog2(fe) < 2 or 100 < raw count < 200 and p value <0.01
= Yes: 2 <log2(ic) and 200 < raw count and p value < 0.01

Figure 76: SNV module - Overview plot from 3D Bio Data Example
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Overview Quality Map

This heatmap shows the logip raw SNV control probes values for each (reference and test) sample in the
dataset. Using this plot, you can not only detect poor quality samples, but can use the vertical color bar on
the left to determine the cause and effect of a possible sample failure. High expression is displayed in red,
average in orange, and low in blue.

o The SNV_INPUT_CTL class (pink bar in Figure 77) contains probes for amplified, endogenous genes.
These demonstrate input gDNA sample quality and amplification success. Relatively low counts
here may indicate, for example, an FFPE sample of compromised quality or a suboptimal PCR
amplification.

o Probes belonging to SNV_UDG_CTL (green bar) are the UDG control probes. Low expression in this
class indicates that UDG digestion was successful and your sample is not suspected to be
susceptible to cross-contamination.

o Probes belonging to SNV_PCR_CTL (orange bar) capture the quality of PCR for each sample. Any
sample in this class with significantly low counts may have experienced suboptimal PCR
amplification.

o SNV_NEG (teal bar) and SNV_POS (coral bar) are exogenous assays using two-armed probes.
SNV_POS probes have template present and should exhibit high expression; SNV_NEG probes lack
a template and should exhibit low expression. Strong signal from the SNV_POS will signify a
successful hybridization. A subset of these probes is used to test lane temperature and represent
background signal. log10 Raw SNV Gonirol Probes

N

is.smp.ref I is.smp.ref
4
Y

CLEGC18A
3 type

SNV_INPUT_CTL
EFCABS Thee
2 | snv_hEG
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Ress . RFos
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Figure 77: SNV module
- Quality map
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By Samples Variant plot

This plot displays a single sample's detection results for each probe. Vertical bars show the estimates and
confidence intervals for each probe's log, fold-change relative to its expected value in reference samples.

o Probes for which an SNV variant was called are highlighted in gold. The dashed gold line marks the
fold-change threshold required for a SNV call.

o Vertical bars in grey, overlapping the black line at 0, indicate probes that are not statistically
significantly above their expected reference level.

o Very low-frequency SNVs may manifest as vertical bars above 0 but with estimates below the fold-
change threshold. These are highlighted in blue.

The legend below the plot details the rule for calling SNVs from raw counts, p-values and fold-changes
above expected reference value.

20170117_SNP-DV2-140-G2-330-C2_FH-C1 B140000270_03.RCC

&
E
2
s I
: :
3 I
. log, (fold-change)
Mo: Ioga(i) < 1 or rew count < 100 0.01 < p velve 99% i over reference
52 Undelcted 1 < g2 < 2or 100 < aw count < 200 and vl <001 confidence &1
Yes : 2 <log2() and 200 < raw count and p value < 0.01 interval

log., (fold-change) = 2;
detection threshold

Figure 78: SNV module - By Samples Variant Plot and diagram

logs (fold-change) = 0;
i.e. no change vs. ref

variant
assayed

EGFRCOSME240. T790M. |j:j:jj:jj:::::""‘""""
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SNV Algorithm Details

The primary task of the SNV evaluation algorithm is to make presence/absence calls for mutations
detectable in the panel as well as to provide statistics that quantify our confidence in the calls. To this end
the algorithm first seeks to characterize the expected distribution of counts for each probe in the panel
when no mutation is present. This is learned from reference sample data. Once this distribution is
characterized for each probe, the algorithm can perform hypothesis tests evaluating whether a count
corresponding to a mutation in a test sample is improbably high when assuming wild type status for the
sample. The algorithm consists of three stages. Preprocessing, initial estimation, and post estimation
refinement.

Preprocessing

This stage involves data normalization and calculation of data attributes required for estimation and post
estimation stage. These attributes include:

o The temperature adjustment factor () is a metric empirically shown to be able to serve as a
surrogate for temperature. Its value is:

A POS4+POS

POSg+POSE

) (Eq.1)

o The normalization factor used to adjust for input/reaction efficiency normalization is the centered
mean log; SNV_INPUT_CTL probe counts for each lane.

o The estimated background for probes with sufficiently high background is a function of £ and the
wild type count corresponding to the same locus. The following steps are repeated for each probe.
Ensure that:

1. Median raw count WT reference samples > min count threshold (default is 50). If not,
set background estimate to 0.

2. Test sample counts are within +/-1.3 z units of the distribution of counts for that
probe’s WT reference sample. If not, set the background estimate to 0. Mean and
standard deviation for z transformation is computed based on the counts from the
reference samples.

3. The adjusted R?is >

Bgij = Bo + Bt + Buw Wioe; + € (Eq.2)
Where Wloc.j is the normalized log, wild type count at loci j centered by sample set id

with sample sets consisting of either reference or test samples. The default adjusted
R? threshold = 0.6.

Initial Estimation

For each mutant probe pj, probe j, and sample i, we fit the following model:
lng(nCOUTltl’j) - Bgl] = ﬁ] + ﬁtjfi +ﬁl] SU + € (qu)

o mnCount;; is the normalized count for sample i, probe j.
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o §jjis a categorical variable which takes on the value “reference” when the i"sample is a reference
sample. For a dataset with n test samples and m reference samples, S has n+1 levels and the model
has residual degrees of freedom =n+m—(n+2) = m-2.

o pBijisthelog,fold change normalized count in sample i for probe j relative to the average log, count
for the same probe in the reference sample. These log; fold change values and their corresponding
user-specified standard error (e.g. 0.95 or 0.99) are computed and stored. Subsequently, using
these estimates as well as the raw counts values calls are made for each mutant probe j. A mutation
is called *when:

1. pvalue < p.threshold (default 0.05)
2. log; Fold change > log; fold change threshold (default is 1 i.e. 2 folds or more up)
3. Raw count > (min count threshold) * 2(oe? fold change threshold)

Post Estimation Refinement

In a typical dataset, the many tested samples for which no SNV calls were made with high confidence
represent data points with wild type status. These can be used to increase our power to characterize the
wild type distribution of counts.

o When test sample i and probe j are consistent with wild type status, we replace the sample id in
variable S;; with the value reference. Completing this exercise for all samples i and probe j, we
then re-run the model in Eq.3. This time, the model benefits from 2k increase in residual degrees
of freedom (if k non-reference samples are re-designated as reference). Following the inference,
calls can be made and the iteration can be repeated until changes to the results are minimal (by
default the algorithm allows for maximum of 20 cycles).

o The iterative process involves the following steps:

1. Refit the model in Eq.3 (unless there were no mutant call, in which case term the Sij
term is dropped).

2. Ensure there is no major outlier in the fitted model (this is done based on evaluation
of Cooks distance as well as z score of the fitted values). If so, exclude and refit.

3. Store the adjusted R? value of the model.

Fit the model for reference status and compute the corresponding SE.

5. For any non-reference sample, compute t value by subtracting the expected value of
reference and dividing the estimate by prediction standard deviation. Using the same
statistic, update the corresponding p value and confidence intervals.

6. Make the calls as before.

% |n the current version, the user interfaces allow for specification of two calling categories by the user
corresponding to two level of stringencies. The outlined steps for calling corresponds to a case where
only the highest stringency is considered a call but the principles of how calls are made are the same in
general given a set of user-specified cut offs.
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7. Repeat until convergence. Convergence is defined to happen when the median shift in
t-values < t.convergence (by default 0.1) or if no change in call status is made. The
model with the highest adjusted R? is selected as the best solution.

Debiasing

The last refinement involves by-sample bias removal. Specifically, the mean log, fold change for wild type
calls in each sample is calculated and the value is subtracted from all fold changes estimated for that
sample. Subsequent to this adjustment, the t and p values are also adjusted accordingly and the call
procedure is repeated.
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Fusion Module

Overview SNV Fusion Diff Expr Analysis Parameters Share

nCounter chemistry provides two different approaches to assist in the detection of gene fusions. Junction
probes are specific to exon-exon pairs and target the sequence of the actual fusion junction (breakpoint).
This provides a direct measurement of the fusion event; if a Junction probe has counts above background,
then the targeted fusion is present. In contrast, groups of imbalanced, or End probes, are used to detect a
fusion independent of its exact splice junction. A typical target gene has at least three End probes at each
its 5" and 3’ ends, well away from known fusion breakpoints. If the 3’ probes exhibit higher counts than the
5’ probes (meaning that there are abundant 3’end transcripts or a display of imbalanced expression) it
indicates that the 3’ end has been fused with some unknown 5’ partner.

The Advanced Analysis Fusion module summarizes fusion events detected in the data through three
different types of plots. It does not require any user input to make fusion calls, however, you may specify
a statistical significance level for detection by Junction probe and / or End probes (see the Custom Options
for Fusion section).

From the Fusion Overview tab, you can choose from the Detection Summary, a color-coded sample-gene
matrix summarizing fusion calls, or the Heatmap, which visualizes raw counts for each probe. The By
Samples tab provides a more detailed look at the data behind fusion calls, allowing you to view histograms
of the log, counts from each probe of any sample in your dataset. The Fusion Summary Report provides
specific details on the probe results used to make fusion calls for each gene.

Overview: Summary By Samples .

Summary | Fusion Summary Report

Heatmap
e eendON SUMMary Show Search:

0 -

2
sample 1D Imbalance detected Fusion detected
NTRK1 - dnaFUS_11.RCC none. none.
dnaFUS_01RCC none. none.
EML4_13ALC_20; KIFS8_15:RET_11, CCDC6_TRET_12;
anaFUS_02RCC ALK, ROS1, RET, NTRK1 SLC34A2_ 4ROST_32, SLC34A2 4ROST 34,
CD74_BNTRK1 12
naFUS_03RCC RET, NTRK1 KIF58_15:RET_11; COT4_BNTRK1_12
RET-
anaFUS_04RCC none none.
AnaFUS_0SRCC none none.
B III-.III

Figure 79: Fusion module view and options

KIFS8_15RET_11; GOPC_BROS1_35,

CERIAAEE CEHIETS) ‘GOPC_4ROS1_36; CD74_8NTRK1_12

anaFUS 07RCC RET KIFSB_1SRET_12, KIF5B_22RET_12

AnaFUS 08RCC

AnaFUS 09RCC

dnafUS_10RCC
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Before You Start Fusion

Use caution when working with very few samples (fewer than 6) and/or when replicate samples are
selected for analysis. The outlier test’s power is sensitive to sample size and fusion frequency (see the
Fusion Algorithm Details section).

Simplified sample names can streamline the plot labels and lists. Use the Description column in nSolver to
assign these shortened sample names, then select Description as your Identifier when initiating Advanced
Analysis (see the I/dentifiers and Covariates section).

Custom Options for Fusion

There is no Fusion custom options menu, however, the General Options menu will include a Specify Fusion
Parameters button if it detects Fusion probes in the dataset. This button allows you to adjust the p-value
threshold for Junction probe detection and End probe imbalance expression.

Specify Fusion Parameters
Junction Probe P-value
0.05

End Probe P-value
0.05

Figure 80: Windows associated with custom options for Fusion - General Options menu
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Interpreting Results of Fusion Plots
Fusion Detection Summary

The Fusion Detection Summary is a sample-gene matrix, color-coded according to whether a gene tested
positive or negative for evidence of a junction (relying on the Junction probe results) and/or positive or
negative for evidence of an imbalance (using collaborated End probe data). This figure summarizes the
fusion calls by plotting each gene tested on the vertical axis and each sample tested horizontally. Color
(see plot key) indicates whether a fusion was detected and the type of evidence (Junction +/-, Imbalanced
+/-, or both) used to make the call. The Junction and End probes provide different levels of evidence for
fusion events (see Table 5). The fusion call is clearest when both types of probes exhibit positive results.
Fusion Detection Summary i

h II-.III
h III-.III

. Junction- . Junction- End Probe+ . Junction+ End Probe-
. Junction- End Probe- . Junction+ . Junction+ End Probe+

R

m
e}

A

£
-

dnaFUS__11.RCC
dnaFUS_01.RCC
dnaFUS_02.RCC
dnaFUS_03.RCC
dnaFUS_04.RCC
dnaFUS_05.RCC
dnaFUS_06.RCC
dnaFUS_07.RCC
dnaFUS_08.RCC
dnaFUS_09.RCC
dnaFUS_10.RCC

Fusion detection

Figure 81: Fusion module - Fusion Detection Summary
These concordant fusion calls provide the strongest evidence for a fusion event. However, even when End
probes and Junction probes provide discordant fusion calls, clear conclusions can often be made. A
positive result for the End probes accompanied by a negative result for the Junction probe may result
from fusions not targeted by the experiment's Junction probes. A positive result from a Junction probe
accompanied by a negative result from an End probe may result from fusions that are expressed at much
lower levels than the wild-type transcript; these fusion calls hold weaker evidence, and examination of
the raw data for these samples is recommended.
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Fusion Summary Report

Fusion Summary Report

Imbalance detected

Fusion detected

This table summarizes the _ }
oW Search:
results from the call = -
summary in table format I
and also gives specific i
details about the probe anaFUS 07 RCC

results used to make the

conclusion(s) at each gene.

dnafUs_02.RCC

dnafUS_03.RCC

dnafUS_04.RCC

dnafUS_05.RCC

dnafUs_06.RCC

dnaFUS_07.RCC

dnaFUS_08.RCC

dnafUs_03.RCC

dnafUs_10.RCC

none

none

ALK, ROS1, RET, NTRK1

RET, NTRK1

none

none

ALIC NTRK1

RET

none

none

none

Figure 82: Fusion module - Fusion Summary Report

Table 5: Categories for Fusion Calls

none
none

EML4_13:ALK_20; KIFSB_15:RET_11, CCDC6_T:RET_12;
SLC34A2Z_4R051_32, SLCI4AZ 4ROST_H;
CD74_B:NTRK1_12

KIFS8_15:RET_11; CDT4_&:NTRK1_12

none

none

KIFSB_15:RET_11; GOPC_8:ROS1 35,
GOPC_4ROS1_36; CD74_8NTRK1_12

KIFSB_15:RET_12, KIFSB_22:RET_12

none

none

none

Result

Category

Summary

Example conclusion

End probe
detection call;
Junction probe
detection call

Detected Gene Fusion,
Variant Conclusive

There is a high probability
that the sample is positive for
a specific gene fusion variant

Positive ALK gene
fusion event at
EML4 _13:ALK 20

End probe
detection call; no
Junction probe
detection call

Detected Gene Fusion,
Variant Inconclusive

There is a high probability
that the sample is positive for
a fusion event but the variant

is inconclusive. May indicate
the variant is not currently
included in the fusion-
specific probes (potentially a
new variant)

Positive ALK gene
fusion event,
location unknown

End probe
undetected call;
Junction probe
undetected call

Non-Detected Gene
Fusion

There is a high probability
that the sample is negative
for a fusion event

No gene fusion
variants detected

End probe
undetected call;
Junction probe

detection call

Inconclusively Detected
Gene Fusion

It is possible that the junction
probe hit is a false positive,
or that a fusion is truly
present but has insufficient
expression to be detected
with the End probe test.

Possible low-level
expression of
GOPC_4:R0OS1_36
atop high wild type
ROS1 expression.
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Heatmap

The Heatmap displays the log, raw counts for the different fusion probes and allows you to view All probes,
just the End probes, or just the Junction probes. Many fusions will be immediately obvious in these
heatmaps, either through high counts of a Junction probe or through strongly imbalanced 5’/3’ probes for
a gene within a sample. These heatmaps can also reveal technical artifacts that may mislead the detection
algorithms. Look for Junction probes with unexpectedly high background counts, and look for samples with
unusually high or low signal across a wide range of probes. Although every experiment and every probe is
different, counts below 20 (3.3 in log,) are often background, and counts above 100 (6.6 in log,) are very

seldom background.
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Figure 83: Fusion module - Heatmap
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By Sample

The By Samples tab allows you to view bar plots of the log, raw counts from each probe of any sample in
your dataset. The End probes plot is shown separately from the Junction probes plot. Review these plots
for every detected fusion call.

The End probes plot shows the log, raw counts of the 5" and 3’ probes. If an End probe detection call was
made in the Fusion Detection Summary plot, confirm in this plot that the 3’ probes’ counts are visibly higher
than the 5’ probes’ counts. Be aware, however, that in genes whose wild-type transcript has high
expression, fusions may appear as slight but consistent increases in 3' probes relative to 5' probes. The null
hypothesis here is that no fusion event occurred and therefore the mean 5' and 3' probes will be equal. A
p-value for this is provided in the upper left of the plot.

The Junction probes plot shows the log, raw counts of the Junction probes. If a Junction probe detection
call was made in the Fusion Detection Summary plot, this plot can provide a double check for the calling
algorithm’s results. Check that the probe detected in the Fusion Detection Summary is truly expressed
above background and above the other Junction probes in this plot. The numbers above the bars show the
ranking of detection where 1 conveys the highest confidence in detection and subsequent lower rankings
convey decreasing confidence. A ranking of 0 means undetected. In the absence of a fusion, all probes will
fall in the background of the system (with a O rank).

If a fusion is present in less than half the samples, the minimum sample size is > 6, and there is a Junction
probe targeting it, that probe should have expression noticeably higher than the corresponding counts for
samples lacking the fusion. In some infrequent cases, splice variants will affect a fused gene and two
Junction probes will be elevated in the same sample.

End probes of ALK for sample Junction probes of ALK for sample
dnaFUS_02.RCC dnaFUS_02.RCC

87 6
24

p <0.05

44
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Figure 84: Fusion module - By Sample plots
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Fusion Algorithm Details

End probe detection algorithm

Fusions result from a 5" promoter region fusing to the 3’ region of a given gene. Highly-expressed fusions
will therefore result in much higher expression of the driver gene’s 3’ end than its 5" end. To quantify the
evidence for 3’ overexpression, nSolver performs a t-test comparing the log-scale data from the 5" and 3’
probes. Equal variance is assumed since, under the null hypothesis, there is no reason to suppose the 5
and 3’ probes will behave any differently from each other. To prevent false detection at low counts, we set
the mean of logz-transformed counts of 5 probes to 3 (8 on the raw count scale) if the real mean is less
than 3. We also set the sample standard deviation to be 1.714, a fixed value derived from a vast database
of background counts. Since we assume the mean count of 3’ probes is higher than the mean count of &’
probes, no test will be performed if the mean count of 3’ probes is lower than the mean count of 5’ probes.
Also, to avoid false fusion calling when the mean count of 3’ probes is close to or within the background,
no test will be performed if the mean count of 3’ probes is less than 32 (5 in log; scale).

Junction probe detection algorithm

If a patient has no known fusion for a given gene included in the panel, then all the Junction probes for that
gene will lack target and return only background counts. Thus, fusion detection is simply an exercise in
identifying Junction probes whose counts are sufficiently higher than background. To test whether each
Junction probe count is above background, we estimate the distribution of background counts, and use a
sequential outlier test (robust Grubbs’ test) to call probes that fall above this background distribution. We
apply the test separately for each Junction probe, looking for outliers among all the samples.

The sequential outlier test works as follows:

o We model the observed logy(counts) as coming from a normal distribution with mean equal to the
sample median of the observed counts and standard deviation equal to either the sample standard
deviation of the observed counts or an SD estimate predicted from a large NanoString database
(details below).

o Given this estimated normal distribution, we derive a p-value for the maximal data point by
calculating the probability that the maximal data point drawn from this distribution would be
greater than or equal to its observed value.

o If the probability is less than our p-value threshold, we make a fusion call, remove the data point,
and repeat the process until half samples are tested.

o Theorderin which data points are called as outliers/fusions is recorded; the fusion call with smaller
order is generally more reliable than the fusion call with larger order.

The outlier test’s power varies with sample size and fusion frequency: the more samples and the lower the
frequency of fusion events, the more accurately the algorithm can make fusion calls. We have run
simulations showing that a sample size of 6 is generally required for adequate power. In experiments with
less than 6 samples, we recommend looking particularly carefully at the raw data bar plots to confirm each
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call. Fusion frequency will seldom compromise the algorithm since it is usually lower than 10%. In extreme
situations where the fusion frequency is greater than 50%, the test power will reduce dramatically.

A note on estimating standard deviation
Because many experiments will lack sufficient data to estimate the standard deviation (SD) of

noise, we use a large historical dataset to model SD. We find most probes adhere to the following
relationship:

SD (log; counts) = 1.2172288 — 0.1250544*mean(log, counts).

To avoid excessively small SD estimates for probes with high means, we set the floor of SD to be
0.5095818. Once the mean of log,(count) is greater than 3.5, we will choose the greater between
the real sample SD and 0.5095818. This use of the sample SD in place of the constant 0.5095818 is
appropriate because when log,(count) is greater than 3.5, the counts are less likely to come from
background noise and more likely to come from either nonspecific binding or other factors, making
the SD estimate from our historical data less reliable.
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Appendix A: 3D Bio Data Example for Advanced Analysis 2.0

The dataset, 3D Bio Data, is included when you download the nSolver 4.0 Analysis Software. This data
contains three biological replicates from two different melanoma cell lines, SKMEL28, which has a known
mutation (c.1799T>A; p.V600E) in both copies of the BRAF gene, and SKMEL2, which has two normal copies
of the BRAF gene (and a known mutation in the NRAS gene). Both cell lines were treated with either DMSO
(vehicle) or vemurafenib (a specific inhibitor of the V60OE mutant BRAF protein) dissolved in DMSO for 8

hours.

Throughout the Advanced Analysis 2.0 User Manual, you will find excerpts of this dataset’s analysis.

nSolver Data Prep

To prepare your data for Advanced Analysis you must:

1.

2.

visualizations.

Import files and set QC parameters in nSolver 4.0.

2 2 . ]
rRec RLF i 4 Rree B TRLF
e omem G =S s =
‘iz Raw Data | §ii Experiments

Type here to filter

E=)-ir, RLF Files
[+}- [hLF| NCOUNTER48_C235E
- [iF| NS_H_MIR
[ [f NS_ST_DNA_V1.0
e
[l [FLF NS_ST_DNA_V1.1
[} ¥, NS_CANCERIMMUNE_RNAPROTEIN_1.1
[} [P, N2_HS_LEUKFUS_V1.0
[} e, N2_HS_LUNGFUS_V1.0

Create an Experiment using the New Experiment button.

] T T

List | |=| Properties

o Select the Import RLF button and follow the prompts of the Import Wizard to import the
RLF for dataset, then repeat the process to import the RLF for the SNV references.

Select the Import RCC button to import RCC files for dataset and the SNV references.
Accept the default QC parameters.

You may wish to assign shortened labels that uniquely identify each of the RCC files
(including the SNV references) using the Description column. This will simplify downstream

1 SKMEL2-DMSO-8h-R1_04.RCC 2 DMSO_R1
2 SKMEL2-DMSC-8h-R2_04.RCC 2 DMSO_R2
3 SKMEL2-DMSO-8h-R3_04.RCC 2 DMSO_R3
4 SKMEL2-VEM-8h-R1_10.RCC 2_WVEM_R1
5 SKMEL2-VEM-8h-R2_10.RCC 2_VEM_R2
6 SKMEL2-VEM-8h-R3_10.RCC 2_VEM_R3
7 SKMEL28-DMSO-8h-R1_04.RCC 23_DMSO_R1
3 SKMEL28-DMSO-8h-R2_04.RCC 28_DMSO_R2
9 SKMEL28-DMSO-8h-R3_04.RCC 28_DMSO_R3
10 SKMEL28-VEM-8h-R1_10.RCC 23_VEM_R1
11 SKMEL28-VEM-8h-R2_10.RCC  28_VEM_R2
12 SKMEL28-VEM-8h-R3_10.RCC  28_VEM_R3

Figure 85: Creating an experiment in nSolver

Filter RCC Files
Filter: | File Name w | Match
&+
RCC RCC RCC
[==--] ==} == Hi
Import View Delete Tabl
12 File Name Description B
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As you follow the prompts in the Experiment Wizard, you can leave background correction off,
create annotations that will be informative to you in your analysis (see below), accept defaults for
normalization, and leave ratio creation off.

o Annotations: Create one annotation column = ==
titled Treatment, and assign DMSO or VEM i i
Name G
according to what is documented in the sample  restment Tel
[BRAF Genotype Tel

names. Create a second annotation titled BRAF
Genotype and assign WT/WT to the SKMEL2

12 Treatment BRAF Genotype Fie Name

samples and Mut/Mut to the SKMEL28 samples. 1oMsO  wImT SKMEL2DMSO-8hR 1 04.RCC
2 DMSO WTMWT SKMEL2-DMSO-8h-R2_04.RCC
3 DMSO WTMWT SKMEL2-DMSO-8h-R3_04.RCC
4 VEM WTMWT SKMEL2-VEM-8h-R1_10.RCC
5 VEM WTMWT SKMEL2-VEM-8h-R2_10.RCC
6 VEM WTMWT SKMEL2-VEM-8h-R3_10.RCC
7 DMSO mut/mut SKMEL28-DMSO-8h-R1_04.RCC
8 DMSO mut/mut SKMEL28-DMSO-8h-R2_04.RCC
9 DMSO mut/mut SKMEL28-DMSO-8h-R3_04.RCC
10 VEM mut/mut SKMEL28-VEM-8h-R1_10.RCC
11 VEM mut/mut SKMEL28-VEM-8h-R2_10.RCC
12 VEM [T sKvEL28-VEM-8h-R3_10.RCC

Figure 86: Creating annotations
in nSolver

3. Once your experiment has been built, expand the navigation tree on the Experiments tab and
highlight the Raw Data level. Select the Advanced Analysis button.

nSolver Analysis Software 4.0 - 0
File RawData Study Experiment Analysis Export Preferences Help
=l T B 0 ororove Lo e
i Raw Data | §ij Experiments ‘= List | =] Properties
Q- Type here to fiter i ROCHia
5 swdes
= | 30 Bio Data Example Filter: File Name v Matchif: is anything v +  Go Reset |
=] vw .'D&oDetaExamleEmemem
» il " % -
il uormaizzdum Ree . a2 il
{ii Grouped Data -— ﬁ & ‘_. [_; 13
i Ratio Data View Table Qc Export Analysis ||| Advanced Analysis |
{#i Analysis Data _
& §ii Fusion Experiment =
j :“‘*‘ — 12 Fie Name Batch ID % Probes Abov... Blank Lane Flag Culndgeln Lane Number
& B New Study 18 __
- [ RNA Protein 2 : [ 100 = 'm 3
5 B SNV MY sce2 ovso shRs oARCC
BN SKEL2 VEM-8h R 1_10.RCC E
ENSKMEL2-VEM 8h-R2_10.RCC 3
s -
e oo s 5 e i G 3080 C55..|
[JSKMEL 28 DMSO-8h-R2_04.RCC[28_DMSO_R2 99.75
-} SK0EL 28 OMSO-8h-R3_04.RCC_|28_DMSO_R3
MY v s _nRce ——
u >
12 __
< >
< >
Welcome to nSolver Analysis Software 4.0 [ 12 of 12 rows selectad |[12:15:44PM

Figure 87: Creating an Advanced Analysis in nSolver
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Setting up the Advanced Analysis

1. Choose a Name for your analysis and select nCounter Advanced Analysis 2.0 for Analysis Type. If
you have not yet installed version 2.0, refer to the Installation section. You can Browse to choose
where the output files should be saved. Select Next.

2. Select a unique Identifier — this field will be used to label samples in the resulting plots. If preferred,
use the modified labels you entered in the Description column when preparing your data in nSolver.
Select your annotations in the Use for Analysis column — this will select them as covariates for
analysis. Select Next.

Identifier Use in Analysis Annotation Choose Type Categorical Reference

[=)- Group: Identifiers

I - ] ] File Name Categorical » SKMEL2-DMS0-8h-R2_04.R..
Description Categorical « 2.DMSO_R2 -

[+ Group: RCC annotations
=]~ Group: Experiment annotations

Treatment Categorical » dmso -
e —l SRR Gl e

Figure 88: Selecting identifiers and covariates in Advanced Analysis

3. Select Custom Analysis.

4. Select the General Options tab. For the purposes of this example, de-select any modules other than
Overview, Normalization, and Differential Expression. We will focus on these to get a general
overview of our data and the samples and genes that are differentially expressed in it.

Analysis Type General Options

General Options Experiment Type: 2

®  Standard MultiRLF Merge (standard experiments merged)
Normalization Choose modules to run: =

# Overview Choose an annotation for defining probe sets: ?
Differential Expression #| Normalization Probe.Annotation v

#| Differential Expression Choose additional image types to create: ?
Summary / Save Settings Pathway Scoring None A

Probe Descriptive

Figure 89: Advanced Analysis Custom Analysis menu - General Options

5. On the Normalization tab, you can customize the Normalization settings. For this example, leave

Analysis Type Normalization Parameters

all defaults.

¥ Normalize mRNA ¥ Normalize Protein
General Options )
® sutomatically find good normalization probes ® Automatically find good normalization probes
Refine the list
Normmaliat Refine the list ine the li
Manually select normalization probes Mznually select normalization probes

Differential Expression

Figure 90: Advanced Analysis Custom Analysis menu - Normalization
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6. On the Differential Expression tab:

o Move Treatment and BRAF Genotype from the Available Annotations field to the Selected

Predictors field

using the green arrow button.

o Leave the Optimal setting and P-value Adjustment method as defaults.

o Leave the Run GSA and Display Results Using PathView boxes selected. These plots will

provide more detail and context to the Differential Expression results. We can change the

number of top pathways to display from 20 to 10 to speed up processing.

o Leave the Color Plots by and P-value Threshold settings as defaults.

Differential Expression

Analysis Type

General Options

Normalization

Differential Expression

Cell type Profiling

Summary / Save Settings

Available Annotations

Treatment
BRAF Genotype

® Optimal 1

P-value Adjustment 2

? Selected Predictors

ERAF Genotype
Treatment

Selected Confounders

Fast/Approximate 2

Benjamini-Yekutieli * ¥ Run GSA (yes/no) ?

# Display Results Using Pathview

® Displaytop 20 ¥

Color Plots by

pathways Pick pathways T want displayed

Fold Change A P-value Threshold 0.05

Figure 91: Advanced Analysis Custom Analysis menu - Differential Expression

7. Select Finish.

8. You will be returned to the nSolver dashboard. Expand the navigation tree of your experiment on
the Experiments tab and highlight the Analysis Data level. Highlight the analysis you just ran in the

central table and select the Analysis Data button.

=

ar Raw Data | jj Experiments i= List | [E Properties
Type here to filter
_vpenEre o e Data Filtering
B Studies
B- 7 3D Bio Data Study Filter: | Analysis Name v | Match if: |is anything W

=) i§i 3D Bio Dat Experiment
- Wil Raw Data
- i Mormalized Data
- Wi Grouped Data
- Wi Ratio Data

- iy Analysis Data
- §iij 3D Bio Data Exp
-~ Uil Raw Data
- Jjj Normalized Data
- {ii Grouped Data
- Wi Ratio Data
i
[#- B miRkNA test study
[t [ New Study

(1118 lills

Analysis Data View Table Delete Analysis  Analysis Report

riii

1 Analysis Name Description Created Date
8l 30 Bio Data AA Analysis package ... Jul 10, 2017

Figure 92: Selecting analysis to view in nSolver

nanoS_trinq

111



nCounter Advanced Analysis 2.0 User Manual MAN-10030-03

9. Your analysis will start to load in an HTML window. You may need to Allow blocked content. Allow
up to one hour (potentially) if running Advanced Analysis 2.0 for the very first time, as the initial
downloading of R libraries is time-consuming. You will need an internet connection and permissive
firewall settings for this step.

Advanced Analysis modules

1. Overview:

The heatmaps cluster data with similar expression patterns. Colored bars along the top of each
heatmap designate SNV and Fusion variant status, covariates, and QC flags. The colored bar along
the left side provides information on probes that will be dropped from analysis due to low signal.
In the raw data heat map (on the left) and the normalized data heat map (on the right) we can see
roughly how the data is clustering and if that coincides with any of the variants or covariates (there
are no QC flags in this dataset). We can see that one sample, 2_DMSO_R3, appears to be slightly
different from the others; this sample does not deviate a great deal and so is no cause for concern,
but serves as an example of the type of pattern you can look for to identify outliers in your data.
We won’t draw any additional conclusions from these plots, since this module is intended be used
as a QC tool and way to get a general impression of your data.

Gene sets: Heatmaps .+ PCA Study design Other QC

Summary

Heatmap of Raw Data Heatmap of All Data
Cell Cycle - Apoptosis

Driver Gene.

JAK-STAT Signaling

KEGG Cytokines and Cytokine Receptors

MAPK

Non-canonical JAK-STAT Signaling

Other Cytokine Genes

PI3K

PI3K-Akt Pathway

Ras

Sample 2_DMSO_R3 appears as a slight outlier in each heatmap

Figure 93: Advanced Analysis Overview module
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Heatmaps = PCA: BRAF.Genotype Study design - Other QC =

Summary

Principal Components of Al Treatment .
CallCyde - Covariates to
Apoptosis BRAF.Genotype

choose from

Driver Gene
JAK-STAT
Signaling PC1-057
KEGG Cytokines et b, ¢ T & o9
and Cytokine ¥ 7 ¥
Receptors
L] L] L]
B pcz-01 || ¢ L
MAPK ] e [ L) BRAF.Genotype
S WTWT
Non-canonical @ 9 N et
JAK-STAT
Signaling * .t PC3-0.09 T
[ *e L] L]
Other Cytokine 2 -
Genes .. .. . v
R b .« ® . PC4-0.06
L ] » »
PI3K-Akt Pathway = = =
Ras s a® |[#Fe ea? v, .:o
PC1-057
Figure 94: Advanced Analysis Overview veee by o Al os Ld
module - PCA plots v ] N T
o . . Y L] L P
In the Principal Component Analysis (PCA), a  |r pcz-o1 || ¢ L
. . o [ e . I e Treatment
clear separation of BRAF.Genotype data points - 4 J — —
can be seen in PC 1 vs. PC 2 results, meaning slpe *.
) ) ) * e ee PC3-009 AR
that changes in this variable cause clear, | d e o L et
consistent changes in the data. Treatmentdoes 7 . 1
not have the same effect. N | I | IR O | PP
This is reinforced by the p-value
histograms under the Other QC tab, == . = e e
which shows a clear left- weighted plot . e o s —
.
for BRAF.Genotype samples, meaning
. I i S——
there are a number of p-vaules in the

[e— 29M

significant range, close to zero. The 21
Treatment p-values are more evenly
distributed, indicating that relatively few
genes appear to be differentially
expressed between the treatment and
control samples.

Frequency

I e ]
00 0z 04 08 03 10

pvalues

The scatter plot on this tab displays the "
housekeeping genes in color. Their
placement at the bottom of the plot “
indicates that they are stable and require Jhno e,
little further attention. e

Figure 95: Advanced Analysis Overview module - QC plots
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Normalization

Looking at mRNA data, we can see the effect of the geNorm algorithm’s removal of each candidate
reference gene on the variability of the normalized data; this information is then used to rank them.
We can also see the Mean Square Error (MSE) of each sample plotted against its normalization
factor in the Normalization Summay plot. Samples that are outliers are named on the plot; we can
see that 2 DMSO_R3, again, appears as a bit of an outlier.

anacyre: [JEENEN  proten

Pairwise Variance during HK Selection

More Plot Information

Genes selected using geNorm

* selected
0050 - © unselected

<

5

3

3

2

Zp 045

=

o

c

5

2

=

=)

B

0040 .
z

2

H

5

g

.
0035
.

Order removed

Figure 96: Advanced
Analysis Normalization
module - mRNA plots

Under the Protein tab, we
can see similar plots
referencing proteins that
were  unselected  for
Normalization and the
MSE vs. normalization
factor for each sample in
the Normalization
Summary. We can check
protein controls on the
Protein Expression
Background plot.

Proba stability: protein

Mare Piol inormatian

Mean Absoluts Deviancs by protsin

Normalization Summary: mRNA

More Plot Information J All Normalized Data J§ mRNA Normalized Data J Download HK Genes

Normalization summary: mRNA

016
SKMEL28-VEMBh-R1_10.RCC
@ 014
B ®
g
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2
2 012
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]
= 010
['4
£
8
H
2 0.08 L
2
2 L ]
2 006 -
088h-R3_04.RCC ° L
[ ]
0.04 - L]

03
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WAD

Expression thresholded: protein

Mare Plol Inormatian

Protein Expression

Background Thresholded

2_DMSO_R1 -
28_VEM_R3 -

28 VEM_R2-
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» 28_DNSO_R3
2 28 pDMsoO_R2
E 25 DMSO_R1-
D vem Ra-
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Figure 97:
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Advanced Analysis Normalization module - Protein plots
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Differential Expression

The Volcano Plot for the
BRAF.Genotype
differential

covariate
the
expression of genes in mut/mut

depicts

samples relative to the wt/wt
samples. It shows multiple p-
value (significance level)
thresholds. Only probes with p-
values in the significant range

are colored and named.

Viewing this plot under the Treatment tab
shows a colorless plot with no p-value
thresholds, indicating Treatment did not result
in signficant gene expression changes.

BRAF_genotype — Treatment

baseline of wt.wt

Volcano Plot: BRAF.genotype: mut.mut vs.wt.wt

More Plot Information

—— adj. pvalue < 0.01 * mRMNA
T adj. pvalue =0.05  BRAF genotype: differential expression * protein
adj. pvalue <010 in mut.mut vs. baseline of wt.wt
=== adj. pvalue = 0.50
10 4 maBk1
PikicD s
Lidhaz FiK3CE
8 7 sTAT1
Lts L1ZhEEIKERE
cfir
MTOR
Kehibpagy  JfaRay
g 6 TURdL1ZRAT HSPROB1 b o
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z TR TLhe Y
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I
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Figure 98: Advanced Analysis DE module - Volcano plot
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Figure 99: Advanced Analysis DE module - Volcano plot
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4. GSA

Gene Set Analysis (GSA) shows us the variation in Global Significance Scores among the gene sets
for each covariate. BRAF.Genotype is associated with more variable results among the gene sets
than Treatment. We can see from the Directed Global Significance Scores plot that the P13K-Alt
Pathway gene set has the highest score in the BRAF.Genotype category.
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Figure 100: Advanced Analysis GSA module - heatmaps
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Figure 101: Advanced Analysis GSA module - Volcano plot
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PathView

As a next step to the GSA analysis, we can view the pathways that include our gene set(s) of
interest in the PathView module. Here, we select the P13K-Alt Pathway again to see where our
genes of interest lie in this particular pathway. Colored boxes show the specific elements of the
pathway that were differentially expressed and whether they are up- or down-regulated in our
data. If we decided to later run the Probe Descriptive module, we would enter these genes for

analysis.
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By Samples
SV Data
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SKMEL28 samples all exhibited variant calls in the BRAF gene, while SKMEL2 samples all

exhibited variant calls in the NRAS gene.
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The SNV call summary gives a clear depiction of the SNV calls made in this data. Results are as

expected
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Glossary

This section defines terminology associated with the Advanced Analysis plug-in module.

Analysis Type: users can choose between two different levels of analysis (see Quick Analysis and Custom
Analysis).

Analyte: a sample that can be identified as RNA, DNA, Protein, or a mixture of one or more types based on
the composition for the purposes of using them in an nCounter assay.

Annotation: A type of notation that can be used to establish groups of samples or probes.

Boolean (true/false) variable: a variable with exactly two categories; yes or no.
Cartridge: the physical device that has 12 lanes which is put into the Digital Analyzer for counting.
Categorical variable: a discrete variable with two or more categories.

CodeSet: a collection of Capture and Reporter Probes designed against specific target sequences.

Confounder: a variable which affects your data but which is not scientifically relevant. Technical
confounders are variables such as run date or cartridge lot. Experimental confounders are variables such
as patient body mass index or age.

Covariates: variables which the Advanced Analysis tool can isolate and assess the effect of. At least one
covariate must be selected for analysis.

Continuous variable: a variable with infinite possible values.

Custom Analysis: the user may select multiple covariates and customize settings in this analysis. In addition
to the core modules, Overview, Normalization, Differential Expression, GSA, and PathView, the user has
access to Related Analytes, Probe Descriptive, Cell Type Profiling, and Pathway Scoring.

Custom CodeSet: a CodeSet with probe content customized to meet a specific customer’s needs. The
probes and their respective target are designed in consultation with the NanoString Bioinformatics team
and manufactured by the NanoString.

Directed global significance score: this value measures the extent to which a given gene set is up- or down-
regulated relative to a given covariate. It is calculated similarly to the undirected global significance score,
but it takes the sign of the t-statistics into account.

Cell Type Profiling module: this module quantifies cell populations using marker genes which are expressed
stably and specifically in given cell types. These marker genes act as reference genes specific to individual
cell types, as they are expressed only in their nominal cell type, at the same level in each cell.

120

nanoS_trinq



MAN-10030-03 nCounter Advanced Analysis 2.0 User Manual

Differential Expression module: this module is used to identify the specific genes which exhibit significantly
increased or decreased expression in response to the chosen covariate. It provides the basis for the Gene
Set Analysis (GSA) and PathView modules and should be viewed prior to both.

Gene set: a group of genes affiliated with a common cell type, disease, pathway, or function.

Gene Set Analysis (GSA) module: this module summarizes the change in regulation within each defined gene
set (selected along the left side of the window) relative to the baseline (or in the case of continuous variable,
per unit change in variable). The values calculated are the global significance score and the directed global
significance score and are expressed in heatmaps and/or a data table.

General Options menu: the menu from which the user can begin to customize a Custom Analysis. Among
other options, users may adjust parameters and choose modules to run.

Global significance scores: (also called undirected global significance scores) a measure of the overall
differential expression of the selected gene set relative to selected covariates, ignoring whether each gene
is up- or down-regulated.

Group: a category of samples, usually defined by an annotation.

KEGG pathways: KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways describe high-level functions
of cell-signaling pathways.

Overview module: this module provides a general overview of the data through descriptive plots, organized
into four categories: Heatmaps, PCA (principal component analysis), Study Design, and Other QC.

Identifiers: unique names that differentiate every sample from the others. The Sample File Name will
always be unique, but can be long, so users may prefer to choose another type of identifier.

Normalization module: this module seeks to eliminate run-to-run and sample-to-sample technical variability
in the raw counts, which arises from inconsistencies in effective sample input and fluctuations in the overall
efficiency in capturing and counting target molecules. It normalizes each analyte-type separately, resulting
in clickable analyte-type tabs which reveal respective plots.

Panel CodeSet: an off-the-shelf CodeSet with predesigned probe content manufactured by NanoString.

PathView module: this module overlays the Differential Expression analysis results with various KEGG
pathways. Elements that are over-expressed in this pathway are colored gold, those that are under-
expressed are colored blue, and those that are neutral are gray.

Pathway Scoring module: this module combines the expression from all genes in a gene set into a single
“pathway score”. Just as Differential Expression analysis of individual genes or gene sets is used to research
the effect of covariates on a dataset, the Pathway Score can be used to summarize the data from a
pathway’s genes into a single score.
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Predictor: a variable which affects the data and which is scientifically relevant. Examples include
treatment type, treatment time, and cell line.

Principal Component Analysis (PCA): a way of analyzing data with multiple variables. Variables that
naturally correlate with each other will be grouped as a principal component.

Probe annotation file: a .csv file containing annotations which document the biological significance of the
probes and link them to the pathways with which they are associated. Users should check probe
annotation files to ensure the fields they need are filled.

Probe Descriptive module: this module provides multiple plots which are focused just on the probes of
interest, which the user designates on the Custom Analysis menu.

Quick Analysis: this type of analysis is performed with only a single covariate and default parameters set for
the preselected core modules — Overview, Normalization, Differential Expression, GSA, and PathView.

Related Analytes: this module enables comparison of mRNA and protein expression levels when the gene
and protein have been linked in the probe annotations file. It applies all the tools of the Probe Descriptive
Module to each pair of related analytes. This module is especially powerful for describing the co-regulation

of mRNA and Protein.

Sample annotations: these annotations are assigned to sample groups during experiment creation in
nSolver and can be used to label both confounders and predictors.

SNV module: this module summarizes SNV variant events and QC information detected in the data.
Variable: a factor in or element of the experiment which is subject to change.
Use for Analysis: this column is available for covariate selection in setting up an Advanced Analysis.

Z-Score: a value that is used to indicate the distance of a certain number from the mean of a normally
distributed dataset.
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