
 

 

 

 

 

  

 

  

  

 

   

 

 

 

    

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nCounter Advanced Analysis 2.0  
Plugin for nSolver Software 

User Manual 
 

NanoString Technologies®, Inc. 

  
530 Fairview Ave N  
Seattle, Washington 98109 

 
www.nanostring.com   
 
T: 206.378.6266  
888.358.6266 
 

E: info@nanostring.com          MAN-10030-03, January 2018 

 

http://www.nanostring.com/
http://www.nanostring.com/
mailto:info@nanostring.com
http://www.nanostring.com


MAN-10030-03  
nCounter Advanced Analysis 2.0 User Manual 

 

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures 

 

 

Intellectual Property Rights 

This nSolver™ Analysis Software user manual and its contents are the property of NanoString 
Technologies, Inc. (“NanoString”), and is intended for the use of NanoString customers solely 
in connection with their operation of the nCounter® Analysis System. The nCounter Analysis 
System (including both its software and hardware components) and this User Manual and 
any other documentation provided to you by NanoString in connection therewith are subject 
to patents, copyright, trade secret rights, and other intellectual property rights owned by or 
licensed to NanoString. No part of the software or hardware may be reproduced, transmitted, 
transcribed, stored in a retrieval system, or translated into other languages without the prior 
written consent of NanoString. For a list of patents, see 
www.nanostring.com/company/patents.  

 

Limited License 

Subject to the terms and conditions of sale of the nCounter Analysis System, NanoString 
grants you a limited, non-exclusive, non-transferable, non- sublicensable, research use only 
license to use this proprietary nSolver software with the nCounter Analysis System only in 
accordance   with this manual, the manual for the nCounter Analysis System, and other 
written instructions provided by NanoString. Except as expressly set forth in the terms and 
conditions, no right or license, whether express, implied, or statutory, is granted by 
NanoString under any intellectual property right owned by or licensed to NanoString by virtue 
of the supply of this software or the proprietary nCounter Analysis System. Without limiting 
the foregoing, no right or license, whether express, implied, or statutory, is granted by 
NanoString to use the nSolver Analysis Software or nCounter Analysis System with any third-
party product not supplied or licensed to you by NanoString, or recommended for use by 
NanoString in a manual or other written instruction provided by NanoString. 

Trademarks 

NanoString Technologies, NanoString, the NanoString logo, nCounter, nSolver, PlexSet and 
Plex2are registered trademarks or trademarks of NanoString Technologies, Inc., in the United 
States and/or other countries. All other trademarks and/or service marks not owned by 
NanoString that appear in this manual are the property of their respective owners. 

 

Copyright 

©2018 NanoString Technologies, Inc. All rights reserved.



MAN-10030-03  nCounter Advanced Analysis 2.0 User Manual 
  

 

 3 

Contents 
Introduction .................................................................................................................................................. 5 

Advanced Analysis 2.0 Basics..................................................................................................................... 5 

Workflow ................................................................................................................................................... 6 

Analyte Types ............................................................................................................................................ 7 

Installation – nSolver 4.0, Advanced Analysis, & R .................................................................................... 8 

Advanced Analysis 2.0 Quick Start Guide .................................................................................................... 11 

What to Do Before Performing Advanced Analysis ..................................................................................... 15 

Experimental Design ................................................................................................................................ 15 

nSolver 4.0 Data Preparation .................................................................................................................. 17 

Creating an Advanced Analysis .................................................................................................................... 19 

Overview Module ........................................................................................................................................ 28 

Before You Start Overview ...................................................................................................................... 28 

Interpreting Results of Overview Plots .................................................................................................... 29 

Normalization Module................................................................................................................................. 36 

Before You Start Normalization ............................................................................................................... 37 

Custom Options for Normalization .......................................................................................................... 37 

Interpreting Results of Normalization Plots ............................................................................................ 38 

Normalization Algorithm Details ............................................................................................................. 41 

Differential Expression Module ................................................................................................................... 44 

Before You Start Differential Expression ................................................................................................. 45 

Custom Options for Differential Expression ............................................................................................ 46 

Interpreting Results of Differential Expression Plots ............................................................................... 48 

Differential Expression Algorithm Details ................................................................................................ 50 

Gene Set Analysis Module ........................................................................................................................... 53 

Before You Start GSA ............................................................................................................................... 53 

Custom Options for GSA .......................................................................................................................... 53 

Interpreting Results of GSA Plots............................................................................................................. 54 

GSA Algorithm Details ............................................................................................................................. 56 

PathView Module ........................................................................................................................................ 57 

Before You Start PathView ...................................................................................................................... 57 

Custom Options for PathView ................................................................................................................. 57 

Interpreting Results of PathView Plots .................................................................................................... 58 

Pathway Scoring Module ............................................................................................................................. 59 



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
4  

Before You Start Pathway Scoring ........................................................................................................... 60 

Custom Options for Pathway Scoring ...................................................................................................... 61 

Interpreting Results of Pathway Scoring Plots ......................................................................................... 62 

Pathway Scoring Algorithm Details.......................................................................................................... 65 

Probe Descriptive Module ........................................................................................................................... 66 

Before You Start Probe Descriptive ......................................................................................................... 67 

Custom Options for Probe Descriptive .................................................................................................... 68 

Interpreting Results of Probe Descriptive Plots ....................................................................................... 69 

Cell Type Profiling Module .......................................................................................................................... 76 

Before You Start Cell Type Profiling ......................................................................................................... 77 

Custom Options for Cell Type Profiling .................................................................................................... 78 

Interpreting Results of Cell Type Profiling Plots ...................................................................................... 80 

Cell Type Profiling Algorithm Details ....................................................................................................... 84 

Related Analytes Module ............................................................................................................................ 87 

Before You Start Related Analytes ........................................................................................................... 87 

Custom Options for Related Analytes ..................................................................................................... 88 

Interpreting Results of Related Analytes Plots ........................................................................................ 89 

SNV Module................................................................................................................................................. 91 

Before You Start SNV ............................................................................................................................... 92 

Custom Options for SNV .......................................................................................................................... 93 

Interpreting Results of SNV Plots............................................................................................................. 94 

SNV Algorithm Details ............................................................................................................................. 97 

Fusion Module ........................................................................................................................................... 100 

Before You Start Fusion ......................................................................................................................... 101 

Custom Options for Fusion .................................................................................................................... 101 

Interpreting Results of Fusion Plots ....................................................................................................... 102 

Fusion Algorithm Details ....................................................................................................................... 106 

Appendix A: 3D Bio Data Example for Advanced Analysis 2.0 ................................................................... 108 

Appendix B: References............................................................................................................................. 119 

Glossary ..................................................................................................................................................... 120 

 

  



MAN-10030-03                                                                                                  nCounter Advanced Analysis 2.0 User Manual  
 

 

 5 

Introduction 

  

Advanced Analysis 2.0 Basics 
 
NanoString Technologies’ nCounter assays are designed to provide a single-tube, ultra-sensitive, 
reproducible, and highly-multiplexed method for detecting nucleic acid targets across all levels of biological 
expression. These assays provide direct detection of targets using molecular barcodes, most without the 
necessity of reverse transcription or amplification. nCounter assays are 
processed on the fully-automated Prep Station followed by data collection 
on a Digital Analyzer; alternatively, processing and data collection may be 
accomplished together on the SPRINT instrument. The nSolver 4.0 
Software Analysis System is provided to organize, view, and prepare your 
data for statistical interpretation.   
 
Advanced Analysis 2.0 is conveniently provided as a link from the nSolver 
dashboard. It draws from powerful academic open-source analysis tools, 
provides a simple interface to guide you through analysis, and displays the 
results in an interactive HTML document. Each Advanced Analysis is 
performed using R, a powerful statistical software program. Familiarity 
with R is not required as users only need to interact with a simple wizard 
within nSolver 4.0.   
 
The basic steps needed to prepare your data in nSolver 4.0 are covered in 
this manual (see the nSolver 4.0 Data Preparation section of this manual); 
for more information on this process, see the nSolver 4.0 User Manual 
(MAN-C0019). 
 

  

Changes from Advanced 
Analysis 1.1 to 2.0 
 
Advanced Analysis 2.0 is 
keeping pace with the 
rapidly expanding 
nCounter technology. In 
this version, data analysis 
becomes more data-
focused and less analyte-
restricted. Single 
Nucleotide Variance (SNV) 
analysis is supported, as is 
Fusion data analysis. 
 

https://www.nanostring.com/download_file/view/1168
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Figure 1: Advanced Analysis workflow 

Workflow 
 
The following steps are common to all Advanced Analyses.  The  Advanced Analysis 2.0 Quick Start Guide in 
the next section leads you through these basic steps.   
 
For more details on a subject: 

o Click the relevant step in the workflow below. 

o Follow the hyperlinks in the Quick Start Guide. 

o Navigate the manual using the Table of Contents and relevant links. 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

View QC results and data analysis in pathways of interest. For an overview of Quick Analysis plots 

and Custom Analysis settings and plots, see the Quick Start Guide to Advanced Analysis section. 

 

Select Advanced Analysis and 

select your samples. 

 

Use nSolver to prepare your data. 

Choose settings 

 Launch Analysis Data from 

nSolver to view progress 

 

Specify sample identifiers, covariates, and annotations 
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Analyte Types 
   
 
Advanced Analysis 2.0, in conjunction with nSolver 4.0, is designed to identify and support the analyte types 
listed below, either alone or in any combination with each other. At this time, it is not designed to analyze 
Plex2, PlexSet, CNV, or miRNA data. Most commercial NanoString panels are supported and this list may be 
updated periodically. Contact support@nanostring.com with questions. 
 
 

  

Messenger RNA (mRNA) – A mRNA molecule is a nucleic acid of 400-
10,000 bases which serves as a template for protein synthesis 
(translation). mRNA panels are offered stand-alone, in Gene 
Expression Panels, and with miRNA panels in the miRGE Assay kits. 
 

Single Nucleotide Variance (SNV) – SNV refers to a single- or multi-
base change of up to 20 bases, which may exist as an insertion or 
deletion, occurring in human genomic DNA.  Vantage 3D DNA SNV 
assays and the Vantage 3D DNA solid tumor panel are designed to 
detect such sequence variations at specific positions at levels as low 
as 5% allele frequency, thereby permitting the detection of somatic 
mutations commonly seen in cancer. 
 

Fusion – A gene fusion event, which results in a hybrid gene formed 
from two previously distinct genes, happens through translocation, 
chromosomal inversion or interstitial deletion. Fusions are often used 
as prognostic markers in cancer diagnosis.    NanoString offers direct 
detection and counting of fusion events in two customizable Lung and 
Leukemia gene fusion panels: the nCounter Vantage 3D Gene Fusion 
panels and nCounter Gene fusion Panels (Ex US). 

 

Protein – Proteins are translated from mRNA producing polypeptides 
which perform the majority of active function within biological 
systems. Vantage 3D Protein Panels target proteins and phospho-
proteins in a variety of cell types with the Immune Cell Profiling, 
Immune Cell Signaling, and Solid Tumor Lysate and FFPE Panels. 
 

  
  

Figure 2: Analyte Types that can be 
analyzed using Advanced Analysis 2.0 

mailto:support@nanostring.com
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Installation – nSolver 4.0, Advanced Analysis, & R  

Requirements 
 
Before running Advanced Analysis for the first time, ensure you have the following: 
 

o A reliable internet connection which allows the download and installation of R libraries. 

o Permissive firewall settings which allow R Script to write files to the home directory and that allow 

access to the websites necessary for full functionality. 

o Adequate time to allow R library downloads; this can take up to one hour.  This requirement is for 

first-time Advanced Analysis users, only. 

o Practice data.  NanoString strongly recommends practicing with sample data before using 

Advanced Analysis on experimental/clinical data.  Contact support@nanostring.com. 

 
 

  

mailto:support@nanostring.com
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Downloads 
 
Advanced Analysis must be separately downloaded from the NanoString website and imported into the 
nSolver 4.0 application. All Advanced analysis plugins distributed by NanoString depend on a specific R 
version. Refer to the instruction manual of the specific Advanced Analysis plug-in you intend to use to 
ensure you have the correct R version installed. 
 
Instructions for the following software downloads are listed individually below: nSolver 4.0 Analysis 
Software, R 3.3.2, and the Advanced Analysis 2.0 plugin. 

 

Downloading nSolver 4.0 Analysis Software  
 
If you have been using another version of nSolver 4.0 alpha, you will need to back up your database and 
start with a clean or blank nSolver 4.0 database. Then, download and install the software. 
  

Windows users:  

o Navigate to c:\users\<username>\appdata\roaming\. Rename your nSolver4 folder to 
nSolver4_old (or similar). You may need to show hidden files in order to see the appdata folder. 

o Download and extract nSolver 4.0 from https://www.nanostring.com/products/analysis-
software/nsolver. Install the nSolver 4.0 application.  

o When prompted to Install R, select Yes (see next section). 

 

Mac users:  

o From your home directory, make sure your hidden files are shown so you can see your nSolver4 
folder. Rename it nSolver4_old (or similar). 

o Download and extract nSolver 4.0 from https://www.nanostring.com/products/analysis-
software/nsolver. Install the nSolver 4.0 application.  

 

Downloading R 3.3.2 
 
R 3.3.2 is required for version 2.0 of the Advanced Analysis. 
 
Windows users:  

o You will be given the option to download R 3.3.2 when you install nSolver 4.0. If you did not, go to 
https://cran.r-project.org/bin/windows/base/old/3.3.2/. 

o If you’ve previously used a different version of R with Advanced Analysis and are updating to a new 
version of R, you will need to change the R home path in nSolver. Select Analysis on the top toolbar 
in nSolver and select Change R Home Path to the R 3.3.2 installation folder. Browse to the desired 
directory and then select Ok. 

https://www.nanostring.com/products/analysis-software/nsolver
https://www.nanostring.com/products/analysis-software/nsolver
https://www.nanostring.com/products/analysis-software/nsolver
https://www.nanostring.com/products/analysis-software/nsolver
https://cran.r-project.org/bin/windows/base/old/3.3.2/
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Mac users:  

o Install R separately. Go to https://cran.r-project.org/bin/macosx/old/R-3.3.2.pkg. 

o Install XQuartz if you use Mac OS X 10.10 or higher. Go to https://www.xquartz.org/. 

o You may need to download R Switch or a similar app to replace your current version of R with 3.3.2. 

Alternatively, you may uninstall all other R versions. 

When initiating an analysis in Advanced Analysis 2.0, nSolver 4.0 will check the version of R you have 
installed and will issue a warning if it is a version incompatible with the program. 

 

Downloading Advanced Analysis 2.0 
 
You will find the most recent version of Advanced Analysis on 
https://www.nanostring.com/products/analysis-software/nsolver. Save this to your computer as a 
compressed .zip file. Do not extract the files before uploading them to nSolver. 
 
In nSolver 4.0, select Analysis on the top toolbar (see Figure 3) and select Advanced Analysis Manager.  Any 
previously-installed versions of Advanced Analysis will be displayed.  You can Remove them or simply Import 
the current version.  To import, select the Import New Advanced Analysis button and navigate to the .zip 
file with the current Advanced Analysis version. This version will be added to the list within the Advanced 
Analysis Manager. Select OK. 
  

 

 

 

 

 
 
 
 
 
 
 
 

 

Figure 3: Importing Advanced Analysis or changing the analysis version 

https://cran.r-project.org/bin/macosx/old/R-3.3.2.pkg
https://www.xquartz.org/
https://www.nanostring.com/products/analysis-software/nsolver
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Advanced Analysis 2.0 Quick Start Guide 
 
The Advanced Analysis software plugin provides a number of R-based statistical tools with minimal input from the user. 
Before beginning, ensure you have a reliable internet connection and security settings that allow pop-ups. First-time 
Advanced Analysis users should ensure they allow adequate time to download required R libraries (this ~750 MB file may 
take up to 1 hour to download). See the Installation section for download and installation instructions. 
 

1. Experimental Design & nSolver 4.0 Data Preparation: Import your RCC and RLF files to nSolver 4.0 and 

create an Experiment. For more on this topic, see the nSolver 4.0 User Manual (MAN-C0019) or the nSolver 4.0 

Quick Start Guide (MAN-10049). Annotate samples, bearing in mind that the annotations will be used as variables 

in Advanced Analysis.  On the Experiments tab, highlight the raw or normalized data and select Advanced Analysis.  

2. Creating an Advanced Analysis: Highlight the desired Advanced Analysis version (if more than one installed), 

choose a Name for the analysis, and Browse for the location in which you would like it saved. Select an Identifier 

that is unique to each sample (including SNV references) and one or more Covariate by checking appropriate boxes. 

Use the drop-down menu in the Categorical Reference column to set a reference group as your baseline.  Selecting 

Quick Analysis will result in Overview, Normalization, and Differential Expression analyses for expression data and 

variant call detection analyses for SNV and Fusion data. Custom may be selected when wanting to customize 

analysis settings; these settings are addressed on pages 3-4 of this guide. 

3. Viewing Analysis: Return to the nSolver 4.0 dashboard, select your experiment, and expand the navigation tree. 

Highlight the Analysis data level and find your most recent analysis on the list. Highlight it and select Analysis Data. 

This will open a window in your browser; you may need to Allow Blocked Content, depending on your internet 

security settings. Libraries will load, status messages will dynamically appear in the browser, and ultimately, an 

analysis screen will appear. See next page for descriptions of plots and options available. 

 

Workflow 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Select Advanced Analysis and 

select your samples. 

 

Use nSolver to prepare your data. 

Choose settings 

 

Launch Analysis Data from 

nSolver to view progress 

 

Specify sample identifiers, covariates, and annotations 

 

Figure 4: Advanced Analysis workflow 

https://www.nanostring.com/download_file/view/1168
https://www.nanostring.com/download_file/view/1170
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  View QC results and data analysis in pathways of interest (this step continued from previous page). 

 

 

Overview  
Overview heatmaps display raw 
data, allowing you to identify gene 
sets with low counts and normalized 
data clusters, which gives you a high-
level view of possible associations 
within the data. Choose to view only 
genes in particular gene sets along 
the left side of the window and 
choose to view Principal Component 
analysis, study design, and QC data 
along the top of the window. 

 
 

Normalization  
This module allows you to normalize 
mRNA and protein data separately. It uses 
the geNorm algorithm for mRNA, 
choosing only the most stable 
housekeeping genes. Scatter plots display 
the effect of the chosen normalization 
settings on the data. Protein expression 
data is also displayed. 

 

Differential Expression 
 
 
 

Gene Set Analysis (GSA) 
GSA overlays differential expression data 
for sets of genes grouped by biological 
function, considering the covariates and 
relative to the baseline. 

 
 

PathView  
 

Analysis 
Parameters 
Under this tab, you 
may view all analysis 
settings and details. 
You may also review 
the reasons behind 
any aborted 
analyses. 

Share 
This allows you to 
access the 
Advanced Analysis 
report as a 
sharable zip file. 
Once it is saved to 
your computer, 
extract 
AdvAnalysisReport.zip 
and view the 
HTML report 
outside of 
nSolver. This 
folder also 
contains all the 
analysis output 
images and data 
files. 

This module 
isolates the 
effect of each 
variable on the 
data. It displays 
a linear 
regression of 
the differential 
gene expression 
for each 
variable as a 
volcano plot. 

 

This module displays different KEGG pathways and 
highlights pathway members most differentially 
expressed in your data. 

 

SNV- & Fusion-specific plots  
SNV and Fusion variant detection call 
summaries can be found on these 
tabs. QC metrics specific to these 
assays can also be found in this 
section. 
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Custom Advanced Analysis Settings & Plots  

General Options 
On this menu, choose the modules to run, confirm the experiment 
type, choose a probe annotation file, and determine any additional 
image types (.pdf, .jpg, etc.) to create. Use the check box to omit 
low count data and then Adjust Parameters to alter the thresholds 
(analyte-specific) that define low count. 

 

Normalization 
Advanced Analysis allows you to normalize each analyte type with 
its own custom settings. Manually select probes or allow the 
software to automatically select the best performing probes. It 
can also refine the list of probes to the top 10 (or other number 
of your choice). See previous page for resulting plot. 

         

Differential Expression 
 

Summary/Save Settings 
This displays a summary of your 
settings for the current analysis and 
allows you to save them for a future 
application. 

On this menu, choose one or more variables to include in 
your differential expression model. Predictors and 
confounders are treated equally in this model, but results 
will only be shown for predictors. Choose to run DE using 
the Optimal or Fast/Approximate method. The Optimal 
method is robust for estimating differential expression 
when probe counts are low or near background but 
computationally demanding. The Fast/Approximate 
method works well for probe counts observed significantly 
above noise. The PathView plots can be colored by either t-
statistic or fold-change. See previous page for resulting 
plot. 

Analysis Type 
Here, you choose between Quick and Custom 
Analysis.

 

Selecting these modules adds them 
to the menu. See following page. 
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Pathway Scoring 
Use the green arrows to select variables 
to plot against pathway scores and 
variables to adjust for before calculating 
pathway scores. See below for plot. 

 

Pathway Score 
 The Pathway Score 
summarizes the data 
from a pathway’s 
genes with a single 
score. The heatmap of 
Pathway scores shows 
a high-level overview 
of how the pathway 
scores change across 
samples. 

 

Related Analytes 
 This module compares 
the expression levels of 
multiple analytes when 
they have been linked in 
the probe annotation 
file. It applies all the 
tools of the Probe 
Descriptive module to 
each pair of related 
analytes.  

 

 Cell Type 
Profiling 
This module quantifies 
various cell types using 
cell type-specific 
marker genes. 

Cell Type Profiling 
 Use the green arrows to move at 
least one covariate from Available 
Annotations to Selected to analyze 
cell population abundance.  
See below for resulting plot. 

Probe Descriptive 
 Search for probe names to calculate 
detailed metrics on a smaller subset 
of genes. At least 5 genes need to be 
entered for Principal Component 
Analysis biplots. See below for 
resulting plot. 

Related Analytes 
 Related probes for different 
analytes will be listed.  Use the 
green arrows to move the probe 
pairs of interest. See below for 
resulting plot. 

Probe Descriptive 
This module provides detailed descriptive analysis of 1–
15 genes selected using univariate and correlation 
plots. When at  
least 5 probes are  
selected, PCA  
biplots and  
parallel coordinate  
plots will also be  
generated.  

 



MAN-10030-03                                                                                  nCounter Advanced Analysis 2.0 User Manual  
 

 

 15 

What to Do Before Performing Advanced Analysis 
 
Meaningful and effective Advanced Analysis outputs rely on properly-designed experiments and well-
prepared data. 

Experimental Design 
 
Experimental design drives the quality and clarity of downstream analysis results.  Considering the number 
of samples, replicates, and variables ahead of time is essential. 

o If working with categorical variables, arrange to run at least three biological replicates in each 

category. 

o Probe annotations document the biological significance of the probes and link them to the 

pathways with which they are associated. Check your probe annotation file to ensure the fields you 

need are filled. For help with your annotation file see the Managing Probe Annotations section. 

o The default unique Identifier for your samples is the file name. This may appear long or complicated 

in visualizations, so you may consider creating a simpler identifier using the Description column in 

nSolver. Ensure that any SNV references you may incorporate utilize the same identifier category. 

o Use your sample annotations to label both confounders and predictors. These will become your 

covariates to choose for analysis. 

o A Confounder is a variable which affects your data but which is not scientifically relevant. 

Technical confounders are variables such as run date or cartridge lot. Experimental 

confounders are variables such as patient body mass index or age. You will want to 

investigate each confounder’s effect on your data in such a way that it does not complicate 

the effect of any predictors included for analysis. Ensure that any confounding variables do 

not wholly overlap with predictors. 

o A Predictor is a variable which affects your data and which is scientifically relevant.  

Examples include treatment type, treatment time, and cell line. You will want to investigate 

each predictor’s effect on your data in such a way that it is not complicated by the effect 

of any confounders included for analysis. Sample annotations (established during 

experiment-creation in nSolver) can be used to distinguish predictors and test for their 

effect on the data in Advanced Analysis.  
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Tips: recommended workflow 
 
It is helpful to run Advanced Analysis through a multiple passes process. 

 
First pass: include all samples and all possible predicting and confounding variables. Run the Quick Analysis 
and view the Overview, Normalization, and Differential Expression modules and check plots on these tabs 
for clustering and bias; these indicate variables which are impacting your data. Use this information to 
determine which samples and covariates to choose for your next pass.  
 
Second pass:  remove samples that failed QC in the first pass.  Choose the covariate that is most scientifically 
relevant to your project and set up a Custom Analysis.  Choose analysis modules and parameters that fit 
your experimental design.  
 
More passes: analysis can be further modified after reviewing analysis results from previous passes.  This 
includes removing outlier samples, using a different covariate(s) and applying different parameters to 
analysis.  
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nSolver 4.0 Data Preparation 
 

Advanced Analysis requires either raw or normalized data from an nSolver experiment as well as the 

appropriate RLF.  Below is an abbreviated description of the nSolver 4.0 workflow required to prepare your 

data for Advanced Analysis. Refer to the nSolver 4.0 User Manual (MAN-C0019) for more details.  

Import Files & Explore Raw Data 
 
A Reporter Code Count (RCC) file is an output file generated by nCounter instruments.  One RCC file is 
produced for each sample tested; this one file contains the barcode counts from each gene and control in 
the CodeSet.  RCC data files should be saved on your computer or USB drive. Open your data folder and 
unzip data files using right click and Extract All. Open nSolver 4.0TM and select Import RCC Files. Browse for 
and select your samples of interest. Select Data has fusion probes if working with fusion data (this allows 
you to designate fusion probes). Select Open. Review QC parameters, then select Import. 
 
A Reporter Library File (RLF) is a file specific to your CodeSet.  It provides nCounter instruments and the 
nSolver 4.0 software application with valuable information about the CodeSet, such as the assignment of 
probe to gene. To import, select the Import RLF File icon on the toolbar at the top of the page.  Browse to 
navigate to the folder in which your RLF file is stored and select Import. Importing the RLF is required for 
Advanced Analysis. SNV references may be run on a separate RLF; this should be imported, as well.  
 
After importing to nSolver 4.0, your RCC data files will be stored under the corresponding RLF file CodeSet 
on the Raw Data tab. Selecting the CodeSet name allows you to view all RCC files in a table format. Scroll to 
check for QC flags. Use Description column to create shortened sample identifiers. 

Import RLF 

 

Raw Data Tab 

 
New Experiment 

 
 

Import RCC Files 

 
New Study 

 

RLF CodeSets 

 
RLF CodeSet 

RCC File 

 

Figure 5: nSolver dashboard – raw data tab 

https://www.nanostring.com/download_file/view/1168
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Create a Study and Experiment 
 
Select the New Study button to create a study, then the New Experiment button to create an experiment 
under that study. Follow the prompts to select the samples to include in your experiment.  
 
Annotations assigned here can be selected later as covariates (variables) in Advanced Analysis (see the 
Identifiers and Covariates section). Carefully consider your experimental design at this stage (see the 
Experimental Design section), as it can have an impact on visualizations created later in Advanced Analysis.  
 
Background correction and Normalization steps are not necessary if the data will be processed by Advanced 
Analysis; the plug-in will perform its own thresholding and normalization and will pull the raw data from 
nSolver. You will be prompted to select SNV reference samples (RCCs and RLF must already be imported 
into nSolver) if working with SNV data. Fold Changes (Ratios) can be calculated by specifying the sample(s) 
that represent the baseline of your experiment.  
 

 

  

Experiments Tab 

 

Study 

 
Experiment 

 

Data Table 

 

Column Options icon 

 

Table/Export/Analysis buttons 
 

Figure 6: nSolver dashboard - experiments tab 
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Creating an Advanced Analysis 

14Select Data 
 
Once you have created an experiment in nSolver 4.0, expand the navigation tree on the Experiments tab 
(by clicking on the + sign) and highlight either the Raw or Normalized data level of your experiment.  

o Raw data is typically used for most single-RLF experiments since the QC processes in Advanced 

Analysis are more sophisticated than those in nSolver.  

o Normalized data should be selected for any multi-RLF experiment.    

 
Highlight the samples you want in your experiment, utilizing the Exclude Selected and/or Keep Selected 
buttons, if desired. The Filter tool is available, as well. 
 
Select Advanced Analysis. Select the version of Advanced Analysis you’d like to use (if more than one is 
installed) choose a Name for the analysis, and Browse for the location in which you would like the resulting 
file saved.   
 
Select Next. A warning will appear if nSolver detects a version of R which is incompatible with the program 
(R version 3.3.2 is required for Advanced Analysis 2.0). See the Downloading R 3.3.2 section. 
 

 

Figure 7: starting an Advanced Analysis 
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Identifiers and Covariates 
 
Identifiers are unique names that differentiate every sample from the others.  The Sample File Name will 
always be unique, but can be long, so you may choose another type of identifier for this reason.  Any sample 
attributes that are unique from sample-to-sample will have a check box in the Identifier column and will be 
available for use.  Only one box may be checked for the Identifier category. 
 
Covariates are variables which the Advanced Analysis tool can isolate and assess the effect of. At least one 
covariate must be selected by checking a Use in Analysis box. Multiple covariate options are available, 
including:  

o Any RCC file attributes, including Cartridge ID, Lane Number, Assay type, Scanned date, Comments, 

FOV Count, and Binding Density. Note that these technical covariates are useful for QC purposes 

only (e.g. assessing batch effects). 

o Any sample annotations added to the lanes in the nSolver experiment wizard during the creation 

of the experiment (see the nSolver Data Preparation section). 

o Any additional sample annotations imported from an external text file in this dialog box. 

Too many covariates selected in one analysis can complicate matters; it is often wise to consider which 

variables are potential confounders and which are potential predictors and run multiple analyses, selecting 

different combinations of covariates in each analysis. 

Select the type of identifier and covariate you have using the Choose Type column; you may choose 

categorical, continuous, or True/False. If categorical, you will need to select a Categorical Reference, which 

will serve as a baseline sample for analysis. 

Select one check box in the Identifier column and at least one in the Use for Analysis (covariate selection) 

column and select Next. 

Use the Import or View Annotations buttons to import new or view existing sample annotations, 

respectively. 

  

Figure 8: selecting identifiers and covariates 
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Analysis Type 

In a Quick Analysis: 

o The analysis is performed with default parameters.  

o Probe annotations are not required for mRNA and Protein analyses. 

o The core modules are preselected – Overview, Normalization, Differential Expression, GSA, and 

PathView.  

o Only a single covariate is used for differential expression (DE) analysis.  

 

In a Custom Analysis: 

o Multiple menu tabs appear to the left of the screen (see the General Options Custom Analysis Menu 

section, as well as the Custom Options section found in each respective module section), allowing 

you to customize parameters. 

o Probe Annotations are required for GSA, PathView, Cell Type Profiling, and Pathway Scoring. 

o In addition to the core modules, Overview, Normalization, Differential Expression, GSA, and 

PathView, you have access to Related Analytes, Probe Descriptive, Cell Type Profiling, and Pathway 

Scoring. You can select or deselect these to customize your analysis.  

o You may select multiple covariates for analysis. 

 

 

  

Probe Annotations tab 
appears if click here link 
was selected below 

 

Summary tab 
appears by default 

Custom Module tabs 
appear when Custom 

Analysis is selected 

Analysis Type tab 
appears by default 

If working with 
custom CodeSet, 
you must import 
Probe Annotations. 

 

Figure 9: analysis type and custom analysis tabs 
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Probe Annotations 

A message indicating the status of your probe annotations will appear at the bottom of the Analysis Type 

window. Most commercial panels come with probe annotations pre-loaded; you may use these, replace 

them with you own file, or customize them using the click here link. See the Managing Probe Annotations 

section. 

 

Load Settings  

Select this button to browse for a saved settings file from a previous analysis from a common CodeSet. This 

will load the saved settings as well as the probe annotations. Covariates may need to be re-selected for 

analysis; navigate to the module menus to reselect or confirm covariates for analysis. 
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Manage Probe Annotations 

The nCounter Advanced Analysis plugin uses probe annotations to define the biological functions of the 
respective probes present. For most commercial CodeSets, the Probe IDs are collectively imported through 
the RLF. If working with a custom-designed nCounter CodeSet, however, you may either request probe 
annotations from NanoString or create a probe annotation file using a template (see sections below).  

Probe annotations: 

o Define KEGG IDs that associate pathway membership of the target gene or expression 

characteristics of a cell type to perform cell type profiling of the data. 

o Assign Gene Set membership where a ‘set’ identifies a broad biological function category such as 

‘Adhesion’. 

o Identify Related probe-pairs such as mRNA and Protein counterparts of a target gene (sharing the 

same NCBI gene ID). 

 

If You Do Not Have Default Probe Annotations 

For Custom CodeSets and a subset of NanoString Panels, Probe Annotation files are not automatically 

uploaded by the software; in these cases, an alert at the bottom of the Analysis Type screen will be 

displayed: Default probes could not be loaded for some or all of the probes in your experiment. In this case, 

you may do one of the following: 

o Run a Quick Analysis with no probe annotations (mRNA and Protein). 

o Request a probe annotation file from NanoString (see the Requesting Probe Annotations from 

NanoString section). 

o Create a custom probe annotation file from a template (see the Creating Probe Annotations for 

Custom CodeSet Data section). 

 

 

 

Creating Probe Annotations for Custom CodeSet Data 

In the Analysis Type window, select the click here link to open the Probe Annotations window.  You may 

also access this window by selecting the Probe Annotations tab, if visible. Select the Download CSV button 

and save the ProbeAnnotations.csv file to your computer. Modify this template file to include annotations 

that suit your analysis needs. The properties of each of the columns are explained in Table 1.  See the 

Importing Probe Annotations Files section for next steps. 
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Requesting Probe Annotations from NanoString 

If you would like to request a probe annotation file from NanoString, send an email to 

bioinformatics@nanostring.com with a request for probe annotations, including the following information: 

o The name of the RLF for the nCounter data that you wish to analyze. 

o The annotation database that you would prefer to employ - GO molecular function, GO cellular 

component, GO biological process, KEGG BRITE, KEGG Pathway, or Reactome. 

o If working with a multiRLF Merge Experiment, include the nSolver experiment report for the 

multiRLF Merge experiment as an attachment. 

o If the data is from a CodeSet Plus RLF, send the RLF file that was used to scan the nCounter cartridge 

to generate your data. 

Save the .csv file for probe annotations that you receive from NanoString to your computer. See the 

Importing Probe Annotations Files section for next steps. 

 

38B 

Importing Probe Annotation files 

In the Analysis Type window, select the click here link to open the Probe Annotations window.  You may 

also access this window by selecting the Probe Annotations tab, if visible. Select the Import CSV button. 

Browse to the desired probe annotation file and select Open.  

Scroll through the preview of the annotations displayed in the screen to confirm that your custom 

annotations have been applied. When you are satisfied, select the Analysis Type tab again and confirm that 

the message at the bottom of the window now indicates that Probe Annotations were loaded for your 

experiment.  

Proceed to the General Options section if running a Custom Analysis or the Back to the nSolver Dashboard 

section if running a Quick Analysis. 

 
  

mailto:bioinformatics@nanostring.com
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Table 1: Probe Annotations file format 

Column 
Number 

Column Name Description 

1 ProbeID The Probe ID must be unique within the file 

2 CodeSet.Name RLF 

3 Probe.Label Generic name for the target mRNA or Protein 

4 Analyte.Type Indicates whether the probe detects an RNA or Protein target 

5 Is.Control Boolean. TRUE or FALSE 

6 Control.Type Indicates whether a Control probe target has Exogenous (e.g., ERCC probes), 

Endogenous (Housekeeping), or Negative controls 

7 Related.Probes Semicolon-delimited list of Probe IDs. Identifies probes for mRNA and Protein 

counterparts of a gene. Probes for splice isoforms or phosphorylated vs. non-

phosphorylated counterparts. Values in this column are necessary to run the Related 

Analytes module 

8 Probe.Annotation Semicolon-delimited list of annotations. Identifies Probe sets characteristic of a 

biological function. By default, this column defines the annotations for grouping 

probes for Gene Set analysis and Pathway scoring Modules. 

9 KEGG.Pathways Semicolon-delimited list of KEGG Pathway IDs; values in this column are necessary to 

run the PathView Module 

10 Cell.Type Identifies cell types in which target genes have known characteristic expression. By 

default, this column defines the annotations for running the Cell Type Profiling 

module. 

11 Official.Gene.Name HUGO gene name http://www.genenames.org (I’d replace this entirely with: “Official 

gene symbol per NCBI”. That happens to be HUGO for human but MGI for mouse… 

12 Fusion.probe.type Denotes whether the probe identifies a junction (fusion), 5’ expression (5p) or 3’ 

expression (3p) 

13 Fusion.base The group of fusion products to which the probe relates. For instance, the oncogene 

related to an imbalance probe or set of fusions (like BCR-ABL) to a specific fusion 

junction 

14 SNV.probe.type Denotes whether the probe identifies reference or variant bases 

15 SNV.LocID An identifier linking all related variant and reference probes for analysis purposes 

16 SNV.annot Name for each probe to be displayed, intended to be more reader-friendly than the 

name in the RLF. 

17  Add additional columns starting at column 12. When present, these will be available 

as a custom annotation column for specifying the column defining probe sets for Cell 

Type Profiling, Gene Set Analysis, and Pathway Scoring. 

http://www.genenames.org/
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20  

 20General Options Menu 

If you’ve chosen to run a Custom Analysis, you can start 

customizing on this tab. 

Choose the appropriate Experiment Type. Standard refers to a 

single-RLF experiment.  A MultiRLF Merge is a multi-RLF 

experiment created by combining more than one pre-created 

experiment in nSolver. 

Choose an annotation for defining probe sets using the dropdown 

menu. This will impact the Gene Set options available in some 

modules. By default, Probe.Annotation is selected. 

Choose additional image types to create. The default image format is .png. Use the dropdown menu to 

specify additional image formats for each image. 

The Omit Low Count Data checkbox permits the software to remove genes that fall below a given low count 

level. You can use the Adjust Parameters button to change the threshold options for the different analyte 

types. The Overview heatmaps depict the probes pruned from analysis with a blue below threshold bar (see 

the Overview Module section). 

Choose modules to run. Click the module check boxes to display the corresponding tabs on the left under 

Analysis Type. Click the appropriate tab to review settings and options. Some options may not be available 

(may be dimmed) due to incompatibility with analyte types detected in the data and/or limitations in the 

probe annotations.  

 

  
 
 

  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and 
brief explanation as to why 
an option may be 
unavailable (greyed out). 

Figure 10: General Options menu and 
Adjust Parameters button options 
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Custom Analysis Module Menus 

See individual module sections for information on Custom Analysis menu options. They are listed here: 

Normalization, Differential Expression (includes GSA and PathView), Pathway Scoring, Probe Descriptive,  

Cell Type Profiling, and Related Analytes. Custom Options for SNV and Fusion are included on the General 

Options tab. 

 

Summary/Save Settings 

The Summary/Save Settings tab provides information about the current analysis and allows you to save the 

settings and apply them to a subsequent analysis for data derived from an identical CodeSet. This is 

especially useful when looking at the effects of different annotations on analysis. 

To save the settings for a subsequent analysis with a common CodeSet, select the Save Settings button on 

this tab. 

To use these settings in a subsequent analysis with a common CodeSet, use the Load Settings button in the 

Analysis Type window (see the Analysis Type section).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Back to the nSolver dashboard  

 
Select Finish.  
 
You will be retuned to the nSolver dashboard.  Highlight your analysis in the list and select Analysis Data to 
view your plots and options. 
 
This will open an HTML window and dynamically display the progam’s status.  When complete, a summary 
screen will appear. Click through the different plots and options for viewing data.   

  

3 
  

Figure 11: Summary / Save Settings tab 
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Overview Module 
 
The Overview module provides a general overview of the data through descriptive plots, organized into 
four categories: Heatmaps, PCA (principal component analysis), Study Design, and Other QC. Heatmap and 

PCA plots can be drawn as a summary of all probes or in just the specific gene set of interest. Note: Fusion 
and SNV data do not produce an overview module.  
 

Before You Start Overview 
 
This module is not intended to be used in in-depth 
analyses; it should be used as a QC tool and way to 
get a general impression of your data. 
 
Designations for SNV and Fusion variant status as 
well as covariates will appear at the top of the 
heatmap. Some covariates will be used to perform 
principal component analysis.  Consider what 
covariates you want to investigate and how your 
covariate conditions overlap with each other. A 
potential confounder which overlaps with a 
potential predictor should be analyzed separately.  
All factors to be investigated in the present study 
should be annotated and selected for analysis. 
 

  

  
 
 
 
 

  

The More Plot Information 
button provides a 
description of the plot. 

 

The Detected/Undetected Calls button opens a 
.csv data table that can be viewed, edited, 
printed, and saved. You may also Save or Save as 
without opening. 0 indicates data below 
threshold and 1 indicates data above threshold. 

Figure 12: Overview module window and options 
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Interpreting Results of Overview Plots 

Raw Data Heatmap 

This heatmap is generated from raw data and allows quick identification of samples and gene sets with low 

signal. Each row of the heatmap is a single probe, and each column is a single sample. Colored horizontal 

bars along the top of the plot identify SNV or Fusion variant status, if applicable, as well as QC flag status 

and covariate categorization. The blue bar labeled below threshold on the left indicates probes whose 

counts have fallen below threshold in all samples (see the General Options Menu section) and will be 

trimmed out of further analysis for all modules except Probe Descriptive and Related Analytes. Unlike other 

plots, clicking anywhere on this image will initiate the interactive heatmap in a browser window; clicking 

again will return you to the original view.  

o Dark Blue bars: counts < background (25) 

o Light Blue bars: counts < 50 

o Grey bars: counts < 100  

o Brown bars: counts < 500 

o Tan bars: counts ≥ 500 

 

 

 

Datasets with exclusively 

low raw counts (e.g., counts 

< 100) may arise from 

experimental failure or low 

input. Data with expressions 

near background must be 

interpreted carefully. You 

may consider using a higher 

effective amount of input 

target.  

 

 
 
The detected2F/undetected calls button links to a .csv 
file stating whether each probe is above 
background, with 0 indicating below and 1 
indicating above background. If you did not specify 
a detection threshold (see the General Options 
Menu section), probes for mRNA will be called 
detected if they have more than double the counts 
of the median negative control.  

SNV/Fusion variants 
QC Flags 
Covariates 

Blue bar 
indicates low 
signal data to be 
trimmed out 

Samples 

Detected/Undetected calls 
button 

Figure 13: Overview - Heatmap of Raw Data 

Figure 14 :Overview - detected/undetected calls table 



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
30  

Heatmap of All Data 

This is a heatmap of the normalized data. This data is plotted by z-score and is meant to provide a high-

level view of the data and possible associations to covariates of interest. Each row of the heatmap is a single 

probe, and each column is a single sample. Colored horizontal bars along the top of the plot identify SNV 

or Fusion variant status, if applicable, as well as QC flag status and covariate categorization. The blue bar 

labeled below threshold on the left indicates probes whose counts have fallen below threshold in all 

samples (see the General Options Menu section) and will be trimmed out of further analysis for all modules 

except Probe Descriptive and Related Analytes. Clicking anywhere on this plot results in a zoomed-in image; 

clicking again returns you to the original view. 

This plot is scaled with relation to the average probe performance across samples to give all genes equal 

mean and variance. Hierarchical clustering is used to generate dendrograms.  

o Blue: low expression 

o Black: average expression 

o Orange: high expression  
 
Click anywhere on the normalized heatmap to open an interactive view.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Blue bar indicates low 
signal data to be 
trimmed out 

Samples 

Figure 15: Overview – Heatmap of All Data 

SNV/Fusion variants 
QC Flags 
Covariates 
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Highlight an area on the selection bars to the right and below to zoom in. Click on the main image to zoom 
back out. Click within the main image to open a window which allows you to adjust the plot and label 
settings. Right-click to save the HTML file or page. Use the X in the upper-right corner of the window to 
return to the original view. 

  

 

 

Select one of the gene sets along the left side of the window to view a normalized 

data heatmap specific to that set of genes.  

When you select a particular gene set from the left-hand tabs, a heatmap of 

normalized data for just the genes in that gene set is displayed. Expression values 

are centered and scaled. Orange indicates high expression; blue indicates low 

expression. 

43B 

 

 

 
  

Figure 16: Overview - Heatmap of All Data - zoom view 

Figure 17: 
Overview - gene 
set list 
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Principal Component Analysis (PCA) 

Use the dropdown menu in the PCA: header to choose which covariate to analyze.  

Principal component analysis transforms data with multiple variables into a linear set of principal 

components. Principal component 1 (PC1) captures the highest level of variance, PC2 the next highest, PC3 

next, and so on. The resulting image (see Figure 18) plots each PC vs. another twice and colors the points 

by the selected covariate (once on one side of the diagonal and once on the other). The boxes on the 

diagonal each contain a PC name; all plots in the same row will have this PC on their y-axis and all plots in 

the same column will have this PC on their x-axis. Viewing the PCA plot for one covariate and then toggling 

to another may help identify clusters in the data associated with a covariate. 

 

In the 3D Bio Data Example (see 

Appendix A), a clear separation of 

BRAF.Genotype data points can be 

seen in the PC1 vs. PC2 results, 

meaning that changes in this variable 

cause clear, consistent changes in 

the data.  Treatment does not have 

the same effect. 

Covariates to 
choose from 

PC1 (y-axis) vs. 
PC4 (x-axis) 

PC2 (y-axis) vs. 
PC4 (x-axis) 

PC3 (y-axis) vs. 
PC4 (x-axis) 

Use the PC 
designations on the 
diagonal to 
determine the x- 
and y-axis for each 
plot. Three plots are 
labeled, above, as 
examples. 

Figure 18: Overview – PCA plots with different covariates selected 
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In the example shown in Figure 18, the first three principal components identify the variability in the data 

associated with BRAF genotype status. Once you have reviewed the PCA plots for your data, you should 

then review the covariates plot under Study Design (see below) to recognize any covariates that are highly 

correlated with the biological covariate. Then, review the PCA plots by that confounding variable. Identified 

confounding variables can be adjusted for in DE analysis or pathway scoring analysis. If specific gene sets 

are selected from the Gene set tabs along the left side of the window, the same plots will be shown, but 

only the genes defined in the specific gene set will be used in the analysis. A gene can occur in multiple 

gene sets.  

 

Outliers may be biologically interesting or caused by technical artifacts such as failed reactions. Samples 

that were initially flagged by nSolver and now appear as outliers in Advanced Analysis should be treated 

with caution. Repeat the analysis after excluding outliers and confirm that any important analysis results 

hold even when these samples are removed. 

 

 

 

Study Design 

The Study Design tab allows you to look at all the covariates and their relationships.  

Examine these plots before viewing the main analysis results.  Compare some of the technical covariates 

(Binding Density, for example) to biological annotations (Subtype, for example). Seeing the distribution of 

samples among the covariates and conditions may give context to an observed result or suggest changes 

needed to the experimental design. If one covariate wholly overlaps with another, it will be difficult to 

discern if one is a predictor and the other a confounder. For example, in an experiment testing different 

subtypes, if each subtype was scanned on a different date, the scanned date covariate could confound the 

effect that subtype has on the samples. As an additional example, if samples belonging to different 

genotypes were correlated with binding density (which is a surrogate for sample input quantity), any 

conclusions drawn should be based upon adjusting for binding density as a confounder. 

 

 

  

Figure 19: Overview - Study Design 
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Other QC 
 
Other QC provides two types of analysis graphs, histograms of p-values and mean and variance scatter plots. 
The histograms provide a good way to see what variables are having a big impact on your data (see below). 
This knowledge, combined with what the experimental covariates tell you about what variables are 
correlated, allows you to separate these variables in Differential Expression analysis and avoid confounding.   

Histograms  

Covariates with no association with gene expression display 

mostly flat histograms, and covariates with widespread effects on 

gene expression have peaks near zero. Technical covariates with 

such left-weighted histograms may have biological relevance, 

and it is sometimes advisable to adjust for them in differential 

expression analyses to avoid confounding.  

In some cases, a covariate with no effect will be correlated with 

a covariate with a powerful effect, producing a left-weighted 

histogram. In datasets with larger sample sizes, there is little 

harm in adjusting differential expression analyses for likely 

unimportant technical variables like Scanned Date, but in smaller 

datasets, including irrelevant variables will reduce statistical 

power. 
 
 
 
In the 3D Bio Data Example (see Appendix A), the conclusions 
drawn from the PCA (above) are reinforced by the p-value 
histograms under the Other QC tab, which shows a clear left- 
weighted plot for BRAF.Genotype samples, meaning there are a 
number of p-vaules in the significant range, close to zero. The 
Treatment p-values are more evenly distributed, indicating lower 
significance.  
  

Figure 20: Overview - Other QC p-value 
Distribution Plots 
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The Mean and Variance Scatter plot 

This plot shows each gene's variance in the log-scaled, normalized data against its mean. Highly variable 

genes are indicated by gene name. Housekeeping genes are color coded according to their use in (or 

omission from) normalization. The plot confirms that the selected housekeeping genes are stable (given 

their low variability and moderate expression levels). This plot highlights genes that are expressed at 

moderate to high levels and show great variability; these may be of interest for further study. 

 

  

High 
variance 

Low 
variance 

High 
expression 

Low 
expression 

  
 

The More Plot Information 
button provides a 
description of the plot. 

 

The Mean and Variance statistics across all genes 
button opens a .csv data table that can be viewed, 
edited, printed, and saved. You may also Save or 
Save as without opening. It provides the average 
normalized count and the variance normalized 
count for each probe. 

Figure 21: Overview - Other QC - Mean and Variance Scatter Plot 
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Normalization Module 

Data normalization seeks to eliminate run-to-run and sample-to-sample technical variability in the raw 

counts, which arises from inconsistencies in effective sample input and fluctuations in the overall efficiency 

in capturing and counting target molecules. This module normalizes each analyte-type separately, resulting 

in clickable analyte-type tabs which reveal respective plots. 

For mRNA data, the Normalization module displays two plots: the Pairwise Variance During HK Selection 

plot, detailing the selection process of the geNorm algorithm  (Vandesompele, 2002), and the Normalization 

Summary, which summarizes the performance of these chosen normalization genes. 

For Protein data, the Normalization module displays three plots.  The first is the Probe Stability plot, which 

ranks the stability of all proteins in the dataset and selects the 15 most stable probes for normalization. 

Second, is the Normalization Summary, which summarizes the performance of these chosen normalization 

genes. The third plot is the Protein Expression Threshold plot, which visualizes the background-subtracted 

normalized counts for each of the analyzed proteins (counts lower than zero after background subtraction 

are thresholded to zero). 

 
  

Figure 22: Normalization module window and options 
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Before You Start Normalization 
 
Advanced Analysis does not automatically detect whether input data is raw or normalized. Raw data is 
usually the preferred selection, as the built-in algorithms help to determine the best normalization probes. 
Please note that normalization performed using the Advanced Analysis module will override any 
normalization previously performed in nSolver. 
 
Because multiRLF Merge experiments originate from multiple nSolver experiments (whose data has 
presumably already been normalized), the Normalization module will not be available (will appear greyed 
out).  

Most commercial CodeSets come with pre-identified potential reference genes. The built-in geNorm 

algorithm will determine the best performing of those reference genes and use them for normalization. 
  

 
 
 

 

Custom Options for Normalization 

The Normalization Parameters tab allows you to specify 

parameters to normalize mRNA and Protein probes 

independently. 

For each analyte type detected in the data, select automatic or 

manual methods for choosing Normalization/Reference genes. 

Automatic normalization is the default; check the Refine the list 

box to customize this list. Manual normalization allows you to 

specify candidate normalization probes and refine it to a list 

consisting of at least 5 normalization probes 
 

  

  
 
 
  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and 
brief explanation as to why 
an option may be 
unavailable (greyed out). 

Figure 23: Normalization Custom Analysis menu 
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Interpreting Results of Normalization Plots 
 

mRNA Plots 
 
For mRNA, in the Pairwise Variance during 
HK Selection plot, the ideal normalization 
genes are determined by selecting those 
that minimize the pairwise variation 
statistic. We see the order in which genes 
have been eliminated from the list of stable 
housekeepers (HK) as we travel along the x-
axis.  The y-axis depicts the measure of 
pairwise variation, which is re-calculated as 
the housekeeper pool gets smaller and 
smaller. The final two genes are not 
displayed, since the statistic can no longer 
be calculated. Pairwise variation will drop as 
the less-stable reference genes are 
removed. At a certain point, the program 
will determine that removing any more 
reference genes will begin to increase 
pairwise variation again; this signifies that it 
has reached the most optimal arrangement 
and that the most stable reference genes 
have been identified. 
 
 
 
 
 
 
 
  

  

The More Plot Information 
button provides a 
description of the plot. 

 

Each button opens a .csv data 
table that can be viewed, 
edited, printed, and saved. You 
may also Save or Save as 
without opening. Respectively, 
they provide all normalized 
data, mRNA normalized data, 
and a list of the housekeeping 
genes and the order in which 
they were chosen by geNorm. 

Figure 24: Normalization - mRNA Pairwise Variance plot 
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For mRNA, the Normalization Summary 
depicts samples by their normalization 
factor on the x-axis and their Mean 
Squared Error (MSE) on the y-axis. As the 
normalization factor for a sample 
increases on the x-axis, the standard 
error of the reference genes decreases. 
Samples with lower counts will therefore 
have noisier data. 
 
The overall quality of the normalization 
decreases as the MSE increases on the y-
axis.  
 
Samples with MSE values far outlying the 
other samples are designated with their 
sample names on the plot. For these 
samples, the chosen reference genes 
might not be effective in their 
normalization. The list of selected 
housekeepers can be downloaded by 
selecting the Download HK Genes button. 
 

Protein Plots 
 
In the Protein Stability plot, a measure of 
stability, the Mean Absolute Deviance (MAD), is 
determined. Ideal proteins for normalization 
have low MAD. Stability in this context is defined 
in terms of how closely each probe follows the 
sample average fold change. The intuition 
behind this method is that the average (across all 
Protein probes) up/down fold change for a 
sample relative to the median expression profile 
(across all samples) roughly estimates the 
normalization factor. In this setting, an ideal 
normalizer probe in any sample shows a small 
deviation from the average fold change of that 
sample, and this is used to rank Protein probes 
on how closely they resemble ideal 
normalization candidate probes. 
 
 
 
 
 

Figure 25: Normalization - mRNA Normalization Summary plot 

Figure 26: Normalization - Protein Stability plot 

Low-quality 
normalization 

High-quality 
normalization 

Low counts, 
High std. error 

High counts, 
Low std. error 



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
40  

For protein, the Normalization Summary 
depicts samples by their normalization 
factor on the x-axis and their Mean 
Squared Error (MSE) on the y-axis. As the 
normalization factor for a sample increases 
on the x-axis, the standard error of the 
reference genes decreases. Samples with 
lower counts will therefore have noisier 
data. The overall quality of the 
normalization decreases as the MSE 
increases on the y-axis.  
 
Samples with MSE values far outlying the 
other samples are designated with their 
sample names on the plot. For these 
samples, the chosen reference genes are 
not effective in their normalization. The list 
of selected normalizers can be 
downloaded by selecting the Download 
Normalizer Proteins button. 
 
 
 
 
 
 
 
For protein, the Expression Threshold plot depicts log-
normalized expression thresholded to zero based on the 
by-lane background level. This plot relies on the mean of 
the negative antibody results and an estimation of 
error.  To estimate error, the module uses either the 
standard deviation (if there are three antibodies to work 
with) or the deviation from the PC1 best fit line (if there 
are only two antibodies to work with). 
 
  
 

 
 
  
 

  

Low-quality 
normalization 

High-quality 
normalization 

Low counts, 
High std. error 

High counts, 
Low std. error 

Figure 27: Normalization - Protein Normalization Summary plot 

Figure 28: Normalization - Protein Expression 
Threshold plot 
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Normalization Algorithm Details 
 
As both sample input and reaction efficiency are expected to affect all probes uniformly4F

1, normalization for 
run-to-run and sample-to-sample variability is done by dividing counts within a lane by the geometric mean 
of the reference/normalizer probes from the same lane (i.e., all probes/count levels within a lane are 
adjusted by the same factor) 

5F

2.  

geNorm selection of housekeeping genes 
 
Normalizer probes can be specified by the user. When not specified by user (default), normalizer probes 
are selected using the widely used geNorm algorithm (Vandesompele, 2002) as implemented in the 
Bioconductor package NormqPCR. While expression of a good housekeeping gene may vary between 
samples in non-normalized data, the ratio between two good housekeepers should be very stable. In other 
words, good housekeepers are expected to rise and fall together and at the same rate. geNorm relies on 
this behavior to iteratively remove candidate housekeepers with the least stable expression relative to 
other candidates. geNorm is implemented in the Advanced Analysis module through the function selectHKs 
in the NormqPCR package. This function, using the geNorm algorithm, ranks genes on the V number 
(variation between successive norm factors as reference genes are removed). Genes are excluded when 
their V number is equal to or less than the smallest V number for all the genes plus one (Vmin + 1).  
 
To understand the how geNorm is implemented, consider the case where we have:  

o n samples   

o p candidate housekeeping genes 

o genei and genej, which are the raw expression of any pair of genes, i and j, respectively, from this 

set of p genes. 

 
For each of the n samples we could compute:  log2(genei/genej). Taking the standard deviation of the n log 
ratio values gives a statistic that captures how these two genes in our sample set deviate from perfect co-
expression (as perfect co-expression across sample set would result in the standard deviation of zero). We 
can call this value Vij.  
 
For genei, we can calculate Vi1 through Vip and then take their average value to represent the average 
degree of dissimilarity in expression pattern between genei and all the other genes in the set of candidate 
genes. This value was called gene stability measure, Mi, by Vandesompele and colleages.   

                                                           
1 This assumption holds true from empirical observations when expressions are not near the background 
counts. Deviation from this assumption becomes stronger for expression nearing the background. 
 
2 This normalization does not account for any batch effect that may exist if data from multiple CodeSet 
batches are being analyzed together in the same study. In the case of multiple batches, we recommend 
the use of reference or calibration samples to quantify and adjust for variability in probe efficiency across 
batches of CodeSet before any subsequent analysis is performed. Some of the modules (e.g., DE) allow 
adjustment for technical variables such as batch effect, however, when the experimental conditions and 
batch effect are confounded, we cannot correct for the batch effect and use of a reference sample is 
needed. 
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o The larger Mi, the more dissimilar the pattern of expression of gene i to the other candidate 

housekeeper genes in the set.   

o M can thus be used to rank the candidate housekeepers from the best (lowest M) to worst (highest 

M) in terms of their similarity (co-expression) to other candidate housekeepers.  

o We could subsequently choose the top 5 or 10 or however many housekeeper genes we believe 

will be optimal.  

 
If the optimal number of genes to be selected is not known, we can use an iterative process to select the 
optimal number of housekeepers from among the candidates. Tracing the variation statistic as genes are 
removed iteratively can allow us to find the point at which variation is minimized and relatively stable; 
this is the point with the optimal number genes. Given n x p matrix of n samples and p candidate 
housekeeper genes, the housekeeper selection proceeds as follows: 

o Compute the normalization factor (NF) as the log geomean of the p genes for each sample to get 

NFp. 

o Compute M1 through Mp. 

o Remove the gene with highest value of M. 

o Re-compute the normalization factor as the log geomean of the remaining p-1 genes for each 

sample to get NFp-1. 

o Evaluate the stability of the new normalization factor, NFp-2, by quantifying the change between 

NFp and NFp-1. This is by variation statistic: Vp/p-1 = standard deviation (NFp – NFp-1). 

o Re-compute M for each of the remaining p-1 genes. 

o Remove the gene with the highest M.  

o Repeat until all but the last two genes are removed. 

 

Normalization 

Consider the graph plotting the (raw) log count of normalizing probe in each of the samples against the 

(raw) log geometric mean of those probes. In this context, points corresponding to each sample follow a 

trend line with slope 1 and an intercept that captures run-to-run variability. In this setting, adjusting for 

run-to-run variability simply involves subtraction of the intercept, which should bring the values 

corresponding to any of the normalizing probes across all samples very close to one another (with some 

variability due to noise). This is what we may expect when normalization is working well.  

If there is large deviation from the expected line of slope 1, substantial variability will remain even after 

subtraction of the intercept. This can be an indication of poor normalization quality. In Figure 29, sample A 

has a positive normalization factor (indicating larger-than-average expression levels of normalizing genes) 

and sample B has a negative normalization factor (indicating smaller-than-average expression levels of 

normalizing genes). Additionally, we observe that the mean squared error, MSE, of sample A is larger than 

the MSE of sample B, which may be taken as sample A not conforming to the described normalization 

adjustment model as well as sample B. 



MAN-10030-03                                                                                  nCounter Advanced Analysis 2.0 User Manual  
 

 

 43 

 

 

Figure 29: Diagrammatic representation showing how the values for the Normalization summary are generated 

 

 

Protein Expression Threshold 
 
With the mean and error known, the background threshold for each line of the Protein Expression 
Threshold plot is equal to the mean of negative antibodies for the lane + 1.96* estimated error.   In the 
heatmap, any antibody value below its estimated background is set to zero. 
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Differential Expression Module 

 
The Differential Expression (DE) module is used to identify the specific targets which exhibit significantly 
increased or decreased expression in response to the chosen covariate. This module provides the basis for 
the Gene Set Analysis (GSA) and PathView modules and should be viewed prior to both.  GSA explores 
differential expression of particular pathways and 
PathView shows that differential expression in the 
context of pathway figures. The DE module lays the 
ground work for this, which can be seen in the volcano 
plot and the significant gene table. 
 
The DE volcano plot displays each target's -log10 (p-
value) and log2 fold change with respect to the selected 
covariate. Highly statistically significant targets fall at the 
top of the plot, and highly differentially expressed genes 
fall to either side. Green point colors and horizontal lines 
indicate various False Discovery Rate (FDR) thresholds.  
 
 
The 40 most statistically significant targets are named in 
the accompanying chart.  
 
 
 

  

  
 
 
 

  

The More Plot 
Information 
button provides 
a description of 
the plot. 

 

The Download CSV Data button opens a .csv 
data table that can be viewed, edited, 
printed, and saved. You may also Save or 
Save as without opening. The name of this 
button will vary with the type of data 
available for download. 

Figure 30: DE module window and options 

Figure 31: DE - statistically significant targets table 
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Before You Start Differential Expression 
 
Multivariate DE analysis requires thoughtful setup. Sample covariates include predictors, variables that are 
scientifically interesting or at the heart of the study, confounders, technical variables that impact 
expression but are of no interest to the study, and uninteresting variables that do not impact expression. 
The linear regressions treat predictors and confounders identically, but results are only reported for 
predictors. It is recommended that you base your covariates on factors that are scientifically believed to 
account for (explain) gene expression in your system. In addition: 
 

o Ensure that any variables you include do not strongly correlate with each other, and similarly, ensure 
two or more categorical variables don’t have redundant categories (see Figure 32). This essentially 
nullifies the effect of both variables and the DE analysis will randomly drop one or both from the 
model. Correlation and level-redundancy can be detected using the Study Design tab of the 
Overview module. See the Study Design section. 

o At least one variable needs to be chosen as a predictor (if using Custom Analysis); additional 
variables may be selected as predictors or confounders. See the Custom Options for Differential 
Expression section. 

o Models with fewer variables are preferable. Generally, linear regression weakens as the ratio of 
variables to the number of samples grows since including too many covariates in a model can 
diminish its ability to detect the effects of the variable you care most about.  

o Similarly, when working with categorical variables, models with fewer categories are preferable. 
Comparison of each category to the reference category is treated as another variable; adding 
categories is equivalent to adding additional variables, weakening the ability of the model to 
determine the effect on expression.     

 
In the example in Figure 32, the normal category in the Type column 
overlaps completely with the normal category in the Subtype column. 
Not only is the Type annotation less informative than the Subtype 
annotation, but DE module may have a difficult time with this. To 
remedy this, the Type column should be dropped. 
 
 

 
  

Figure 32: Annotation example 
- redundant variables may 
cause DE analysis to fail 
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Custom Options for Differential Expression 
 
Custom Analysis can effectively isolate the effect of multiple 
covariates on gene expression and avoid confounding due to 
technical variables by allowing multiple predictors and 
confounders to be included in the multiple regression model.  
 
Highlight the Available Annotations of choice and move at least 
one to the Selected Predictors window with the green arrows. You 
may designate Selected Confounders, as well, if desired. 
 
The Fast/Approximate method for estimating DE can be used for 
most datasets, but Optimal, although more time consuming, is 
more accurate for low count data and should be used for datasets 
with low input samples or a high degree of low count targets. 

 
Since nCounter data is multiplex in nature, we provide the option to apply an adjustment to the p-values 
before plotting them in DE to correct for the high number of comparisons. You can select none if you would 
prefer raw p-value thresholds throughout DE plots. There are three methods for P-value Adjustment:  

o The Bonferroni correction is a very conservative approach to multiple testing: it multiplies each p-
value by the number of genes tested. Although genes with low Bonferroni-corrected p-values have 
very strong evidence for differential expression, many genes worth consideration may be ruled out 
by this method. 

o The Benjamini-Yekutieli method returns moderately conservative estimates of false discovery rate 
(FDR), but, importantly, makes the assumption there may be some biological connection between 

  
 
 
  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and 
brief explanation as to why 
an option may be 
unavailable (greyed out). 

Figure 33: DE Custom Analysis menu 
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genes. FDR is the proportion of genes with equal or greater evidence for differential expression 
(i.e. equal or lower raw p value) that are expected to be “false discoveries” due to chance. For 
example, if a gene has p = 0.02 and FDR = 0.25, then 25% of the genes with p ≤ 0.02 are expected 
to be false discoveries. 

o Benjamini-Hochberg is a method of estimating FDR that assumes that the genes and variable 
studied do not have an impact on each other. This would be the best choice when it can be assumed 
that the majority of targets and covariates studied don’t have a common biological/ functional 
focus. 

 
As introduced earlier, the DE results can be viewed through the optional Gene Set Analysis (GSA) and 
PathView modules. To run those, select the Run GSA and Display Results Using PathView boxes. 

o GSA will result in summary heatmaps as well as labeling of the DE volcano plot, such that the genes 
of each pathway are highlighted. See the Gene Set Analysis (GSA) section. 

o Selecting to display results using PathView will then allow you to display the top 20 pathways or 
choose a different number (the analysis time will increase with the number of pathways 
requested). You may also choose to display a hand-picked selection of pathways to view. The 
software will overlay DE information over each pathway figure. 

o You may choose to Color Plots by fold change or T-statistic, and choose a P-value Threshold. 
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Interpreting Results of Differential Expression Plots 

Volcano Plots 
 
The differential expression results are displayed as a volcano plot for each variable chosen as a predictor in 
the regression analysis and table. A volcano plot visualizes the results for the chosen covariate in the DE 
model. If using Quick Analysis, you will only have one covariate’s analysis to view.  If you chose Custom 
Analysis and chose multiple covariates, you can click on the buttons above the plots to choose which 
covariate’s analysis to view.  
 
The genes of greatest interest will be both high in the graph (corresponding to a very small p-value) and at 
either the right or left side (corresponding to greatly increased or decreased expression). mRNA probes will 
be displayed as solid circles and Protein probes as triangles. Note the following: 

o Note where the p-value thresholds lie and how much of your data is above the significance 
threshold for your study (and is therefore appearing significant). If you selected a p-value 
adjustment on the Custom Analysis menu, your thresholds will reflect the adjusted p-value, 
whereas the axes will be based on raw p-values. 

o Points above your p-value threshold will be shown in color (mRNA in purple, protein in gold).  See 
Figure 34a.  If all points are uncolored and there are no thresholds on the plot (as in Figure 34b), 
this indicates that none your data points have p-values at a significant level. 

o Data points should often be fairly spread across the plot (and not clustered to one side, for 
example); if not, check normalization settings and explore if there is a biological reasons for this 
skewing.   

 
In the 3D Bio Data Example (see Appendix A), the Volcano Plot for the covariate BRAF.Genotype depicts the 
differential expression of genes in mut/mut samples relative to the wt/wt samples. It shows multiple p-
vaule (significance level) thresholds (Figure 34a, above). Only probes with p-values in the significant range 

Figure 34: DE - Volcano Plots 

34a. 34b. 
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are colored and named. Viewing this plot under the Treatment tab shows a colorless plot with no p-value 
thresholds (Figure 34b), indicating Treatment did not result in signficant gene expression changes. 

Significant Genes Table 
 
The corresponding table presents the genes with the lowest p-values for differential expression with 
respect to the selected covariate. The estimated log fold-change represents the average magnitude of a 
gene's differential expression. Note the following: 

o For categorical covariates, a gene is estimated to have 2log fold-change times its expression in baseline 
samples, holding all other variables in the analysis constant.  

o The 95% confidence interval for the log fold-change is also presented, along with a p-value and an 
adjusted p-value or FDR if requested. 

o For continuous covariates, for each unit increase in the selected covariate, a gene's expression is 
estimated to increase by 2log fold-change fold, holding all other variables in the analysis constant.  

o Log fold-change values have a slightly different interpretation for continuous variables. For 
continuous variables, the fold-change must be read in the context of the range of the variable. If 
the variable has a small range, a unit increase is a huge difference, and large log fold-changes are 
to be expected. In contrast, if we studied the covariate “drug dose in milligrams,” we would expect 
very small estimated log fold-changes, not because the drug has a small effect but because an extra 
1 mg of the drug has a small effect. 

 
 

 
 

Figure 35: DE - Significant Genes Table 
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Differential Expression Algorithm Details 

Data model 

Let 𝑦𝑗  be the count of probe in sample j after 

normalization to the housekeeping probes, j = 1,…,J. 
We assume 𝑦𝑗  is the sum of the background noise 𝑧𝑗 

and the true expression 𝑥𝑗, where 𝑧𝑗 and 𝑥𝑗 follows 

negative binomial (NB) distribution: 

𝑧𝑗~𝑁𝐵(𝜆𝑏 , 𝜙𝑏), 

𝑥𝑗~𝑁𝐵(𝜇𝑗 , 𝜙), 

log⁡(𝜇𝑗) = 𝑋𝑗
𝑇𝛽.  

The negative binomial model contains a dispersion 
parameter 𝜙. It accommodates the variance of probe 
expression within biological replicates, which is not of 
interest in differential expression (DE) analysis. When 
𝜙 = 0, the negative binomial model reduces to the 
Poisson model. 

 

Estimation of model coefficients 

Model 1: Mixture negative binomial model 

o Parameter estimation: Let 𝑓(𝑥|𝜇, 𝜙) be the probability mass function (PMF) of the negative 
binomial distribution with mean parameter 𝜇 and dispersion parameter 𝜙. The marginal 
probability mass function for 𝑦𝑗  can be derived as 

p(𝑦𝑗|𝑋𝑗, 𝛽, 𝜙) = ⁡∑𝑓 (𝑥|𝑒𝑋𝑗
𝑇𝛽, 𝜙) ⋅ 𝑓(𝑦𝑗 − 𝑥|𝜆𝑏 , 𝜙𝑏)

𝑦𝑗

𝑥=0

 

The log likelihood function is 

𝐿 =∑log

𝑗

p(𝑦𝑗|𝑋𝑗 , 𝛽, 𝜙) ⁡ 

The parameter 𝜇 and 𝜙 are estimated by maximum likelihood method: 

𝛽̂, 𝜙̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽,𝜙𝐿 

This can be obtained via the MLE function in R/stats4.  

o Inference and p-value calculation: If the MLE exists, the hessian matrix at MLE is evaluated: 

𝐻 =
𝜕2𝐿

∂𝛽 ∂𝛽𝑇
|𝛽 = 𝛽̂, 𝜙 = 𝜙̂, 

and the variance-covariance matrix is 𝐻−1. 

The test hypothesis is: 

Notations 

𝜆𝑏: mean of background noise. 

Estimated using all negative controls 

in all samples. 

𝜙𝑏:  dispersion of background noise. 

Estimated using all negative controls 

in all samples. 

𝜇𝑗:  mean expression in sample j. 

𝜙:  dispersion. 

𝑋𝑇:  J×P matrix for the sample 

annotation. P is the number of 

covariates including the intercept 

term. J is the number of samples. 

𝑋𝑗
𝑇:  the jth row of 𝑋𝑇, annotation of 

sample j. 

𝛽:  P×1 matrix for the parameter. 
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H0:⁡𝛽𝑝 = 0⁡vs⁡H1:⁡𝛽𝑝 ≠ 0, 

where p is the index of the covariate in the design matrix.  

The Wald test is conducted and the test statistic is: 

𝑆 =
𝛽̂𝑝

√𝐻𝑝𝑝
−1

 

where 𝐻𝑝𝑝
−1 is the pth element on the diagonal of 𝐻−1 matrix.  

 

 

Model 2: Simplified negative binomial model 

The complexity of algorithm in model 1 is proportional to the total count of the probe, which can result in 
long computation time for probes with large counts. Model 1 can be simplified to the following form 
when 𝑦𝑗  is significantly greater than the background mean 𝜆𝑏: 

p(𝑦𝑗|𝛽, 𝜙) = ⁡𝑓 (𝑦𝑗 − 𝜆𝑏|𝑒
𝑋𝑗
𝑇𝛽, 𝜙) 

The maximum likelihood estimate of 𝛽 is then obtained using the glm.nb function in R/MASS.  

 

 

Model 3: Log-linear model (linear regression) 

In case the algorithms in 1 and 2 fail to converge and lead to unstable estimate of the parameters, log 
transformation is taken on the counts. Assume normal distribution of the log transformed data: 

log(𝑦𝑗 − 𝜆𝑏)~N(𝑋𝑗
𝑇𝛽, 𝜎2) 

The maximum likelihood estimate of 𝛽 is obtained via lm function in R. 

 

 

Flow of algorithm 

The flow of the algorithm works as follows: the mean of the gene across all samples is compared against 

the threshold, where the threshold is 10-fold of background noise. If the gene mean is above the 

threshold, the mixture model in 1 is simplified to 2. If mixed model in 1 does not converge, the simplified 

model in 2 is applied instead. If model 2 does not converge, the loglinear model in 3 is used.  
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Variables 

If your variable is categorical, you will be asked to assign one level of the category as the baseline or 
reference level. If a category has a reference level (normal) and levels A, B, C and D as well as another 
covariate, Binding Density (whether confounder or predictor), a linear regression will be run for each gene 
using the following model: 

E log
2
(expression) = ß0 + ß1(IA) + ß2(IB) + ß3(IC) + ß4(ID) + ß5(binding.density) 

Depending on each sample label (whether Normal, A, B, C or D), only one of INormal, IA, IB, IC, ID will take on 
value 1 and the rest will be 0. (Note that INormal is not in the model and its coefficient value is absorbed by 
ß0 term). binding.density here is a continuous variable.  

 
 
 

Optimal Method 
 
For each gene, the Optimal method (see the Custom Options for Differential Expression section) infers 
differential expression with respect to specified covariate(s) using a negative binomial mixture model for 
low expression probes or a simplified negative binomial model for high expression probes. The Fast 
method uses the simplified negative binomial model for all probes. In situations of algorithm not 
converging, the linear regression method will be used instead. High or low expression is determined by 
how high the probe mean is across all samples relative to the negative controls. At least one covariate 
must be selected as the predictor. Analysis will take into account the selected confounders but results will 
only be displayed for covariates designated as predictors.  
 
Running the Optimal model is computationally intensive and run time is proportionate to data size and 
number low expression probes. It may take several 10s of minutes depending on the data size and count 
distribution. 
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Gene Set Analysis Module 

 
Gene set analysis (GSA) summarizes the change in regulation within each defined gene set (selected along 
the left side of the window) relative to the baseline (or in the case of continuous variable, per unit change 
in variable). The values calculated are the global significance score and the directed global significance score 
and are expressed in heatmaps and/or a data table. 
 

Before You Start GSA 
 
Since much of GSA originates from Differential Expression Analysis, see the Before You Start Differential 
Expression section. 
 

 

Custom Options for GSA 
 
There is no custom menu for GSA.  The Differential Expression menu, however, features a checkbox 
indicating whether to run GSA (see the Custom Options for Differential Expression section). 

 
  

Figure 36: GSA module window and options 
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Interpreting Results of GSA Plots 
 

Summary - Global Significance Scores 

 
Global significance scores (also called undirected global 
significance scores) measure the overall differential 
expression of the selected gene set relative to selected 
covariates, ignoring whether each gene is up- or down-
regulated.  
 
The chosen covariates are listed along the bottom of the 
heatmap and the various genesets are listed along the 
right side.  
 
 
 
 
 
 
 
 
 

Summary – Directed Global Significance Scores 

 
Directed global significance scores measure the extent to 
which a given gene set is up- or down-regulated relative 
to a given covariate. It is calculated similarly to the 
undirected global significance score, but it takes the sign 
of the t-statistics into account. 
 
The chosen covariates are listed along the bottom of the 
heatmap and the various genesets are listed along the 
right side. 
 
 

In the 3D Bio Data Example (see Appendix A), 
we see that the BRAF.Genotype is associated 
with more variable results among the gene sets 
than Treatment (Figure 37). We can see from 
the Directed Global Significance Scores plot 
(Figure 38) that the P13K-Alt Pathway gene set 
has the highest score in the BRAF.Genotype 
category. 

 
 

Figure 37: GSA - Undirected Global Significance 
Scores plot 

Figure 38: GSA - Directed Global Significance 
Scores plot 
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If only a single variable is chosen as 
a predictor, then a table will take 
the place of a heatmap, showing 
values for directed and undirected 
global significance. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene set of choice – covariate of choice  
 
Selecting a pathway along the left side of the window results in volcano plot and table of values.  The 
volcano plot is a replicate of that drawn in the Differential Expression module, but all data points are greyed 
except those in the selected pathway (those data points are colored). 
 
 

 
Selecting the P13K-Alt Pathway 
gene set results in the 
Differential Expression volcano 
plot, overlaid with colored 
points which reflect the probes 
in that gene set.  We can see 
that there are a number of 
probes from this gene set with 
significant results. 

  

Figure 39: Global Significance Scores Table 

Figure 40: GSA - Volcano plot by gene set and covariate 
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GSA Algorithm Details 

 

 
Differential expression analysis calculates a t-statistic for each gene against each covariate in the model. A 
gene set’s global significance score for a covariate measures the cumulative evidence for the differential 
expression of genes in a pathway and is calculated as the square root of the mean squared t-statistic of 
genes.  

𝑔𝑙𝑜𝑏𝑎𝑙⁡𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒⁡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = ⁡(
1

𝑝
∑𝑡𝑖

2

𝑝

𝑖=1

)

1/2

, 

where ti is the t-statistic from the ith pathway gene. 

 

The directed global significance statistic is similar to the global significance statistic, but rather than 

measuring the tendency of a pathway to have differentially expressed genes, it measures the tendency to 

have over- or under-expressed genes. It is calculated similarly to the undirected global significance score, 

but it takes the sign of the t-statistics into account: 
 

𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑⁡𝑔𝑙𝑜𝑏𝑎𝑙⁡𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒⁡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = ⁡𝑠𝑖𝑔𝑛(𝑈)|𝑈|1/2 

where U = (
1

𝑝
∑ 𝑠𝑖𝑔𝑛(𝑡𝑖) ∙ 𝑡𝑖

2𝑝
𝑖=1 )  

and where sign(U) equals -1 if U is negative and 1 if U is positive.  

 

A pathway with both highly up-regulated and highly down-regulated genes can have a very high global 

significance statistic, but a directed global significance statistic that is relatively close to zero. The two 

statistics will be equal in a pathway that contains genes regulated in only one direction. 
For each gene set, the volcano plot is redrawn and table produced as described in the DE module, with the 
exception that the genes in that pathway are highlighted on the plot and displayed in the table 
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PathView Module 

The PathView module overlays the Differential Expression analysis results with various KEGG pathways. 
Elements that are over-expressed in this pathway are colored gold, those that are under-expressed are 
colored blue, and those that are unchanged are gray.  

Before You Start PathView 
 
PathView plots are simply DE results overlaid with KEGG pathways. See the Before You Start Differential 
Expression section. 

Custom Options for PathView 
 
There is no custom menu for PathView.  The Differential Expression menu, however, features a checkbox 
to choose whether to display PathView, dropdowns for how many pathways to offer and whether to color 
plots by fold-change or t-statistic, as well as a box to enter a p-value threshold for plotting. See the Custom 
Options for Differential Expression section. 

Figure 41: PathView module view 
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Interpreting Results of PathView Plots 
 
Throughout each of the KEGG pathways offered along the left side of the window, nodes associated with 
genes are colored blue if the data suggests that they are down-regulated or gold if it suggests that they are 
up-regulated.  The KEGG pathways listed are those with the highest level of differential expression for your 
dataset; the number of top pathways offered depends on the number chosen on the Custom Analysis menu 
(20 is default; see the Custom Options for Differential Expression section) and how many probes in your 
dataset map to those pathways. 
 
Note that the default p-value threshold is an un-adjusted p-value, so some colored nodes may represent 
false positives. Also, before inferring significance from the abundance or paucity of differentially 
expressed genes in a particular pathway, consider the percentage of genes from that pathway that are 
actually represented in the CodeSet. Studying the impact of the data on the overall pathway in addition to 
its effect on the individual parts results in a more holistic analysis.  

 
 
As a next step to the GSA analysis in the 3D Bio Data Example (see Appendix A), we can view the pathways 
that include our gene set(s) of interest in the PathView module. Here, we select the P13K-Alt Pathway 
(Figure 42) to see where our genes of interest lie in this particular pathway. Colored boxes show the 
specific elements of the pathway that were differentially expressed and whether they are up- or down-
regulated in our data. If we decided to later run the Probe Descriptive module, we might enter these 
genes for analysis. 

Figure 42: PathView plot 
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Pathway Scoring Module 

Just as Differential Expression analysis of individual genes or gene sets is used to research the effect of 

covariates on a dataset, the Pathway Score can be used to summarize the data from a pathway’s genes into 

a single score. 

At least one covariate must be chosen against which to plot the scores, while the effects of other variables 

that may be highly correlated with gene expression can be removed from the analysis by adjusting the 

score with respect to those variables (see the Custom Options for Pathway Scoring section). Pathway scores 

are calculated as the first principal component of the pathway genes’ normalized expression.  

When the software generates pathway scores, there 

can be some ambiguity in the directionality of those 

scores. The software will attempt to orient them such 

that increased score corresponds with increased 

expression in a majority of the pathway genes. In 

pathways where the first PC is somewhat balanced 

between up-regulated and down-regulated genes, 

however, the direction of the pathway score can be 

somewhat unpredictable. 

Like any complex statistical metric, Pathway Scores 

should be interpreted with caution. Although the first 

principal component of a gene set may reflect pathway 

activity or deregulation in some settings, the scores 

may be confounded by biological effects (i.e., 

  
 
 
 
  

The More Plot 
Information button 
provides a 
description of the 
plot. 

 

The Download Pathway Scores button opens 
a .csv data table that can be viewed, edited, 
printed, and saved. You may also Save or 
Save as without opening. It contains pathway 
scores for all samples and pathways. 

Figure 43: Pathway Scoring window and options 



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
60  

proliferation or immune cell abundance) or technical effects (i.e., sample input or preparation) unrelated 

to the pathway activity. For these reasons, pathway scores can be a useful tool for understanding your data 

in some settings, but misleading or meaningless in others. Interpretation of scores should never be 

performed without correlating them to other analysis results (such as differential expression testing), to 

ensure that they are placed in the correct biological context.  

 

Before You Start Pathway Scoring 
 
To run the Pathway Scoring Module, you must choose Custom Analysis as your Analysis Type and check the 
appropriate box on the General Options tab.  Once you have done that, the Pathway Scoring tab will appear 
in the list and you will be able to select it for customization (see the Custom Options for Pathway Scoring 
section). 
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Custom Options for Pathway Scoring 
 
Your available annotations will appear on the Pathway Scoring tab.  
Use the green arrows to move over those annotations with which 
you would like to plot the Pathway Score (to the Plot Pathway 
Score Vs field) and those for which you would like to adjust it (to 
the Adjust Pathway Score For field). 
 
Adjusting for covariates removes their signal from the data before 
pathway scoring is performed. To be precise, when this option is 
selected, each gene will be regressed against the selected 
covariates and pathway scoring will be performed on the residuals 
of these regressions.  
 
It is usually advisable to Adjust Pathway Score For various technical variables that are suspected to influence 
gene expression. These may be needed to account for (e.g.) data generated by different operators, from 
different labs, or using different lots of NanoString reagents. Adjusting for biological variables is a more 
difficult decision. In some cases, you may want to score pathway status independent of one biological 
variable to isolate the effect of another biological variable. For example, in data with multiple subtypes and 
multiple treatment groups, the signal from a subtype may exceed the signal from a treatment group. In this 
case, adjusting for subtype will help the pathway scores capture the effects of the treatment group. Even 
if there is only one biological variable, it can sometimes make sense to adjust for it. For example, adjusting 
for the treatment group can encourage pathway scores to reflect treatment-independent tumor state, 
which could be desirable depending on the biological question of interest. 

  

  

  
 
 

  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and a 
brief explanation as to why 
an option may be 
unavailable (greyed out). 

Figure 44: Pathway Scoring Custom Analysis menu 
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Interpreting Results of Pathway Scoring Plots 
 
For a given pathway, PC analysis scores each sample using a linear combination (a weighted average) of its 
gene expression values, weighing specific genes to capture the greatest possible variability in the data. 
Thus, the first PC will reflect whatever factor(s) emerge as the main driving force of variability in gene 
expression for that dataset.  
 

Summary Plots 
 
The Heatmap of Pathway Scores is a high-level overview of how the pathway scores change across samples. 
Pathways are listed on the horizontal axis and samples are listed vertically. Using this plot, you may begin 
to understand how pathway scores cluster together and which samples exhibit similar pathway score 
profiles. Orange indicates high scores; blue indicates low scores. Scores are displayed on the same scale via 
a Z-transformation. 
 
 
 
In the RNA-Protein 
dataset used in this 
example (Figure 45), we 
can see that the six 
samples in the 
unstimulated group 
exhibit high scores with 
T-cells and B-cells, but 
low scores with all 
others. The Stimulated 
group tested opposite 
these results.  
 
 
 
  

Figure 45: Pathway Scoring - Heatmap of Pathway Scores 
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The Heatmap of Correlation Matrix of Pathway Scores 
is a heatmap showing the correlation matrix of 
pathway scores. Pathways are listed on both the 
horizontal and vertical axes. Orange indicates positive 
correlation, while blue indicates negative correlation. 
Since the values are mirrored across the diagonal, you 
may limit your observations to either the upper or 
lower triangular matrix. 

 
Similar to the previous heatmap, the RNA-
Protein dataset used in this example (Figure 
46), shows that T-cell Function and B-cell 
Function have negative correlations with all 
other pathways but positive correlation with 
each other. 

 

 

Pathway Measurements vs. Other Pathway Scores 
 
On the Summary tab, you may select an individual pathway of interest along the left side of the window. 
This creates a collection of scatter plots, each with the selected pathway of interest on the x-axis. On each 
scatter plot’s y-axis is an alternative pathway. If you have more than one covariate, you will see a scatter 
plot collection for each covariate. 
 
This combined view allows you to see how the scores for each pathway compare to scores for other 
pathways and how the different experimental conditions are distributed across each comparison. You may 
identify pathways with highly correlated scores in this plot, which may indicate  that these are  driven by 
the same underlying factor(s). Others may be almost completely uncorrelated, indicating that they reflect 
very different biological events. 
 
In the RNA-Protein dataset used in this example (Figure 47), we select B-Cell Functions from the list to see 
this pathway’s correlation with other pathways. As in the heatmaps, above, it shows positive correlation 
with T-Cell Functions and negative correlation with all other pathways.  

Figure 46: Pathway Scoring module - Correlation 
matrix of pathway scores 

Figure 47: Pathway Measurement vs. Other Pathway Scores 
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Covariates Plots 
 
Pathway Scores vs. Covariate 
 
Selecting the Covariate tab and the Summary of all pathways results in a plot of all pathway scores against 
the covariate chosen earlier on the Custom Analysis menu (see the Custom Options for Pathway Scoring 
section). There is a separate graph for each covariate; pathway scores are plotted to show how they vary 
across different experimental conditions. 
 
In the RNA-Protein dataset used in this example (Figure 48), we see that scores for T-Cell Function and B-
Cell Function increase between the unstimulated and stimulated groups, while others decrease. 
 

 
  

Figure 48: Pathway Scoring module - All Pathway Scores vs. covariate 
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Pathway of choice vs. Covariate 
 
Selecting the Covariate tab and a specific 
pathway along the left side of the window 
results in a separate box plot for each 
experimental condition. Each depicts 
pathway scores on the y-axis vs. the 
experimental conditions for the covariate on 
the x-axis.  
 
 

In the RNA-Protein dataset used in 

this example (Figure 49), we select 

B-Cell Functions from the list and 

see, again, that the unstimulated 

treatment group exhibits low 

pathway scores (which often 

indicates down-regulation of the 

pathway) while the stimulated 

treatment group exhibits elevated 

pathway scores (which often 

indicates up-regulation). 

 

 
 
 

 

Pathway Scoring Algorithm Details 
 
This approach of extracting pathway-level information from a group of genes using the first principal 
component (PC) of their expression data was established by Tomfohr, Lu, & Kepler in 2005. 
 
 

  

Figure 49: Pathway Scoring module - Pathway of choice vs. 
Covariate 
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Probe Descriptive Module 

The Probe Descriptive tab provides multiple plots which are focused just on the probes of interest, which 
you designate on the Custom Analysis menu.  Univariate plots show the distribution of the probe results 
according to the variable of choice.  Correlation plots illustrate the relationship between the probes of 
interest. PCA Biplots display the impact of the expression of probes of interest on the clustering of samples, 
contrasting principal components (PCs) two at a time, for the variable of choice. Parallel Coordinate Plots 
allow you to view the expression levels of the probes of choice; the experimental group’s results overlay 
each other, each displayed in a different color. The Interaction network plot visualizes a conditional 
dependency network among the selected probes that best describes the observed data. The Trend Plot 
visualizes the expression trajectory of a trending variable (e.g. a patient ID, a cancer subtype) typically 
across an ordinal variable (e.g. time). 

 

  

Figure 50: Probe Descriptive window and options 
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Before You Start Probe Descriptive 
 
Due to the highly descriptive nature of this analysis, you may consider adding one or only a few covariates 
to this analysis. 

 
To choose probes to use for descriptive analysis: 
 

o Run an initial Advanced Analysis without the Probe Descriptive module so that you can identify the 
most differentially expressed probes from the DE module plots and tables.  

o List 5-15 probes which appeardifferentially expressed across the different groups belonging to the 
annotation that you wish to analyze. Make sure your list includes genes that are both induced and 
repressed. 

 
Return to the nSolver dashboard and run a second Advanced Analysis, selecting Custom Analysis. This time, 
on the General Options tab, select the Probe Descriptive box.  In the Probe Descriptive module menu, enter 
the probes that you identified in the first analysis and move them over to the Selected Probes window. 
Select the grouping annotation(s) that you used to identify differentially expressed genes. 

  



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
68  

Custom Options for Probe Descriptive 
 
Use the checkboxes to search for probes of the analyte-type of interest (RNA, protein, etc). Probe names 
will dynamically appear as they are typed and can be moved over to the Selected Probes field using the 
green arrow buttons. You may enter up to 15 probes (if five or more are entered, PCA plots will also be 
generated). Probes used as housekeepers or removed from the analysis via a low count threshold will not 
be included in the output. To identify probes of interest, consult the Before You Start Probe Descriptive 
section. 
 
Move any annotations to be used in Grouping the expression data using the green arrow button. At least 
one annotation must be selected. 
 

You can check the box to Generate Trend Plots if you have covariates to designate as Interval ID and as 

Series ID. The interval ID can be an ordered categorical or continuous variable. Additionally, trends across 

distinct sample annotation groups can be examined by specifying an optional stratifying annotation.  

o Interval ID is the variable that defines how the data points are ordered along the trend (horizontal 
axis in plots). Typical covariates that would be specified as Interval IDs are Time (as in the example 
below – Figure 51), Concentration, and Dosage; there should be three or more groups in this 
variable.  

o Series ID defines the groups into which we wish to separate the samples (for example, patient 
cohorts). In general, the definition of group could extend to the case where each group consists of 
only one observed entity (for example, one patient). The example below uses BRAF Genotype. 

o Stratifying Annotation allows you to separate the series ID into groups to see a trend. Since we are 
interested in how Treatment affects each BRAF genotype (chosen as Series ID, below), we will 
select it as our stratifying annotation. 

Selecting the Generate Interaction Network box generates a network that best describes the conditional 
relationship between your selected probes. You can adjust for a covariate that is expected to influence 
these probes. In this context, the relation between two probes is defined as their statistical dependence on 
one another after accounting for their dependence on other probes.  

 
  

Figure 51: Probe Descriptive module Custom Analysis menu 

  
 
 

  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and 
brief explanation as to why 
an option may be 
unavailable (greyed out). 
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Interpreting Results of Probe Descriptive Plots 
 

This module provides detailed descriptive analyses of the genes of your choice. The analysis will always 

include univariate plots and correlation plots. When at least 5 probes are selected, PCA biplots and parallel 

coordinate plots will also be generated. Interaction network plots will be generated, if selected. 

Additionally, when trending parameters (Series ID and Interval ID) are defined, you may generate trend 

plots. 

47BUnivariate Plots 

For categorical variables, a box plot is overlaid with a violin plot providing information on both the log2 

expression quartiles as well as the estimated expression distributions for each level of the categorical 

variable(s) of interest. For each box in the boxplot: 

o The horizontal black line on the box plot represents the median expression. 

o The box depicts the 2nd quartile of expression. 

o The green dots display each sample’s log2 expression for the specific gene selected (on the 

left).  

o The grey shading represents the estimated distribution of the expression values. 

  

 

 

Figure 52: Probe Descriptive module - Univariate biplot for categorical variable 
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For a continuous covariate, a scatter plot is generated, showing each sample’s normalized log2 expression 

level plotted relative to the continuous variable. 

o The dotted line represents the least squares fit, drawn along with the 95% confidence interval (CI). 

o The green dots display each sample’s expression for the specific gene selected (on the left).  

o The grey shading represents the estimated distribution of the expression values. 

 

  

48B 
  

Figure 53: Probe Descriptive module - Univariate plot for continuous variable 
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Correlation Plots 

The correlation plot allows visualization of two sets of information: distribution of gene expression and 

correlation of gene expression. When the covariate of interest is continuous, the values are categorized into 

low, average and high. Each field belongs to the gene listed at the top of its column and the gene listed on 

the right side of its row. 

o The distribution of expression for each gene is drawn on the diagonal (note this effectively 

replicates the violin plot from the univariate analysis), segregating experimental groups belonging 

to the chosen covariate by color.  

o The correlation of gene expression for each pair of genes is expressed numerically in the top right 

fields as the overall Pearson correlation coefficient and corresponding p-value. Pearson values of 

correlation of gene expression segregating covariate groups is also given; groups are separated by 

color. 

o The correlation of gene expression for each pair of genes is expressed graphically in the lower left 

fields, plotting the expression values and separating the groups by color. 

  Figure 54: Probe Descriptive module - correlation plots 
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PCA Biplots 

 
PCA biplots also allow visualization of the relationship between the genes chosen for probe descriptive 
analysis.  

Each biplot shows the spread of the probe data along a pair of principal component (PC) axes. You may 

choose the PC’s of interest from the PCA Biplots menu on the left side of the window. The plot includes:  

o Samples: each point in the PCA biplot corresponds to one sample. The coordinates of each point 

indicate the sample’s Principal Component scores. Samples with similar Principal Component 

scores have similar gene expression profiles and cluster together. Points are colored by covariate.   

o Ellipses: each category of the chosen covariate is represented by a colored ellipse. This represents 

the estimated region where the majority of the samples (68%) of that category type would be 

expected to fall, assuming the analyzed samples represent the population well. The extent to which 

the ellipses overlap indicate that gene expression differences are not enough to differentiate 

among categories of the covariate.  When ellipses are non-overlapping, the different categories of 

the covariate of interest have distinctly different PC scores and gene expression profiles cluster the 

categories apart.  

o Vectors: each vector in the biplot corresponds to one gene. The direction and length of the vector 

indicate how each gene contributes to the principal component. Vectors pointing in the same 

direction indicate co-regulated genes. 

 
In Figure 55, we can see that PC1 clusters 
the WT (blue ellipse) and MUT (gold ellipse) 
categories apart. IL-5, CXCL5, and BCL2 
display long projections on PC2 and short 
projections on PC1, toward either BRAF 
genotype group,indicating these genes do 
not have a major impact on the differences 
between WT and MUT groups.  
VEGFA (left) and JUNB (right) display 
projections in opposite directions, 
indicating that VEGFA is upregulated when 
JUNB is downregulated, and vice versa (see 
the patterns of gene expression on the 
diagonal of the correlation plot). 
JACK2, PICK3RR and SPP1 have long 
negative projections on PC1, while IKBKG, 
IL13RA2, IL8 and PIK3CG have long positive 
projections on PC1, meaning that they 
contribute in high degree to the clustering 
apart of WT and MUT samples. Because 
they display projections in opposite 
directions, they have opposite patterns of 
regulation (see the patterns of gene 
expression on the diagonal of the correlation plot). 

Figure 55: Probe Descriptive module - PCA Biplot 
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Parallel Coordinate Plots 

These plots provide a simple way to see up/down regulation of each gene relative to the covariate of 

interest. The expression is scaled for each gene across all samples.  

This view lets you compare the patterns of gene expression among the different categories of the covariate 

of interest. When a continuous variable is selected, its values are split into average, high and low. 

 

Figure 56: Probe Descriptive module - Parallel Coordinate Plot 

51B  
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Trend Plot 
 
This plot is designed to enable visualization of the change in expression levels as a function of a variable of 
interest, the Interval ID, grouping your samples by a category, or Series ID (see the Custom Options for Probe 
Descriptive section). You can further stratify your samples using a Stratifying Annotation. 
 

 
The Interval ID is the variable of interest; it is typically a continuous variable such as time, concentration, or 
dosage, and is plotted on the x-axis of the plot. The example in Figure 57 uses time as Interval ID (variable 
designated continuous). 
  
The Series ID defines groups such as patient cohorts (treated vs untreated) or cell lines. The example in 
Figure 57 uses BRAF genotype (which correlates with cell line) as series ID. 

The Stratifying Annotation separates the trend plot information into plots for each category of the 

stratifying variable. The example in Figure 57 uses Treatment (DMSO as vehicle and VEM as treatment) as 

the stratifying annotation.  

For the settings used to create this plot, see the Custom Options for Probe Descriptive section. Each probe’s 

gene expression is plotted in a single color over the interval ID variable (time) in three narrow lines, 

corresponding to the three BRAF genotypes (the series ID variable). The thick line of the same color 

represents the average of the expression values of the three BRAF genotypes.  

52 
  

Figure 57: Probe Descriptive module - Trend Plot 
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Interaction Network Plot 

The interaction network plot shows the conditional dependency network among the selected probes, as 

suggested by the data. This analysis is highly exploratory and is meant, primarily, to aid hypothesis 

generation. Although the network inferred is the most likely network under the modeling assumptions and 

based on the data provided, it may not reflect a real biological network.  

An edge between two nodes implies an association between them, after accounting for the variability of 

all other nodes. As with many other analyses, the inference here can be performed on data adjusted for 

selected variables when the effects of those variables are to be removed from the inference. The thickness 

of the edges denotes significance or confidence in the inferred edge. The color of edges captures the 

direction of the effect (i.e., if the nodes have positive or negative conditional dependence). It suggests this 

is the baseline interaction and matches up to known pathways. 

 

 

 

  

Figure 58: Probe Descriptive module - Interaction Network plot 
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Cell Type Profiling Module 

 
This Advanced Analysis module uses the method described by Danaher (2017) to measure the abundance 
of various cell populations. The method quantifies cell populations using marker genes which are expressed 
stably and specifically in given cell types. These marker genes act as reference genes specific to individual 
cell types, as they are expressed only in their nominal cell type, at the same level in each cell. The closer 
the biomarker genes defined in the probe annotation are to this ideal scenario, the more reliable the scores. 
 
Plots are categorized in three tabs along the top of the window: QC, Summary, and Covariates. Each tab’s 
plots can be further categorized, on the left side of the window, as either a Summary or by each Cell Type. 
 
The QC tab within this module displays p-values for correlation of marker gene expression. These p-values 
should be reviewed before examining the main cell type results. Cell types with high p-values and 
uncorrelated genes may still produce useful measurements, but will require more skepticism than other 
cell types. 
 
 
 

 
 
 
 
 
 

Figure 59: Cell Type Profiling window and options 
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Once the cell type QC plots have been reviewed, look at the cell type scores on the other tabs. Table 2 lists 
ways in which to use this data and ways in which it is somewhat limited. Note that because the scores are 
simple averages of marker gene expression, they convey no information about the absolute number of cells 
in a sample.  

 
The Summary and Covariates tabs allow you to analyze both Raw and Relative cell type abundance 
estimates.  

o Raw cell type measurements are simple averages of the log2 expression of each cell type’s marker 
genes. 

o Relative measurements are calculated as contrasts between raw measurements. This may be 
useful since the abundance of most cell types might be  highly correlated with the tumors’ variable 
amounts of total infiltrate. Relative profiles better reveal differences in the composition of that 
infiltrate. Also, in PBMCs and other samples where tumor cells do not provide the majority of RNA, 
relative measurements can be much cleaner and easier to interpret than raw measurements. 

 

Before You Start Cell Type Profiling 
 
This module will only run with CodeSets in which a significant proportion of their genes are cell-type genes. 
 
To run the Cell Type Profiling module, you must choose Custom Analysis as your Analysis Type and check 
the appropriate box on the General Options tab.  Once you have done that, the Cell Type Profiling tab will 
appear in the list and you will be able to select it for customization (see the Custom Options for Cell Type 
Profiling section). 

Table 2: Options and limitations of Cell Type Profiling 
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Custom Options for Cell Type Profiling 
 
Your available sample annotations (covariates) will appear in the 
Available Annotations field.  Use the green arrows to move over 
those annotations (at least one is required) that you want to 
examine in Cell Type Profiling. 

The CodeSet’s probe annotation file will designate which genes 
are cell type specific markers using the column with header 
“Cell.type”. In addition, gene lists can be created by modifying the 
probe annotation file. To specify the cell types’ characteristic 
probes (markers) select either Use Default(cell.type) or designate 
a Custom column. See the Creating Probe Annotations for Custom 
CodeSet Data section. 

In Creating Signatures, the Dynamically Select a Subset option will reject genes that do not behave like 
marker genes (genes which are poorly correlated with the other markers for the cell type; see Danaher 
2017 for details). These will appear with the word “discarded” underneath in some plots (see the QC Plot 
for Cell Type Measurements of Choice section).  The Use All Probes setting bypasses this QC step and retains 
all genes, regardless of whether they display cell type specific correlated expression. 
 

  

  
 
 

  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and 
brief explanation as to why 
an option may be 
unavailable (greyed out). 

Figure 60: Cell Type Profiling custom options menu 



MAN-10030-03                                                                                  nCounter Advanced Analysis 2.0 User Manual  
 

 

 79 

The software tests each cell type’s marker genes for better-than-random marker-like co-expression 
(Danaher 2017) and returns a p-value for each cell type score. The P-value Threshold defines the 
significance threshold for reporting a cell type abundance estimate.  

o By default, the module will display all, returning results for all cell types regardless of their p-value. 
This setting may be desirable since gene sets with high p-values may still be useful: even if your 
dataset does not provide high confidence values, the results of previous authors provide enough 
evidence to make their use a reasonable choice. 

o Alternatively, you may choose Custom and enter a value of 0.05 or lower to see results (and 
calculate relative cell scores, see below)  only for cell types whose quantification is further 
supported by your data. Cell types whose evidence for cell type-specific expression does not meet 
this level of confidence will be discarded.  

 
Show Results for allows choices in how results are displayed: 

o Raw cell type abundance shows the estimated abundances of each individual cell type. Abundance 

estimates are given on the log2 scale, so a unit increase in score corresponds to a doubling of a cell 

type’s abundance. As each abundance estimate is simply the average of the log2 counts of chosen 

characteristic genes (cell.type genes), these estimates do not support claims about whether one 

cell type is more abundant than another. Rather, they permit claims that a cell type is more 

abundant in one sample than in another. 

o Relative cell type abundances show contrasts between pairs of cell types. For example, rather than 

measuring CD8 T cell abundance, a relative cell type score measures CD8 abundance relative to 

overall T cell abundance. A relative abundance measurement is especially useful in a sample 

comprised of a heterogeneous mix of cell types such as PBMCs. 

o Contrasts are ratios of the cell type scores in the form of cell type 1/cell type 2. They will only be 

displayed if a cell type profile is generated for both the numerator and the denominator. If you 

wish to upload your own cell type contrasts, you can generate a contrast matrix using a template 

similar to that shown in Figure 61 and save it as a .csv. You can then select the Upload Your Own 

option on the Custom Analysis menu and Choose File. See Cell Type Profiling Algorithm Details for 

more information. 

 
 
 

  

Figure 61: Custom cell type contrast matrix file 
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Interpreting Results of Cell Type Profiling Plots 

QC Plots 
 
Barplot of p-values across cell types 
 
p-values from the test for marker-like co-expression are 
-log10 transformed. Bars above the solid black line 
indicate statistically significant cell types at a p-value 
threshold of 0.01. Bars above the dashed black line 
indicate statistically significant cell types at a p-value 
threshold of 0.001.  
 

In the RNA-Protein dataset used in this example (Figure 
62), Neutrophils and Cytotoxic Cells are the cell types 
with the most significant p-values. 

 

 

QC Plot for Cell Type Measurements of choice 

 

Stable cell type-specific expression of biomarkers allows us to score the cell type’s abundances simply by 
taking the average log2 expression of its characteristic genes. Selecting the cell type of choice from the left 
side of the window allows you to view the 
normalized expression of the genes found to be 
characteristic of that cell type. If a cell type's 
characteristic genes are specific to the cell type and 
stably expressed within it, they will be strongly 
correlated with a slope of 1. Substantial departures 
from this pattern indicate noisier quantification of 
cell type abundance. The resulting image (Figure 63) 
plots each cell’s results vs. another twice (once on 
one side of the diagonal and once on the other). The 
boxes on the diagonal each contain a cell name; all 
plots in the same row will have this cell on their y-
axis and all plots in the same column will have this 
cell on their x-axis. “Discarded” under the cell name 
indicates that the correlation between cell types 
was so poor that they qualified to be dropped. 

In the RNA-Protein dataset used in this example 
(Figure 63), SH2D1A and CD3D have the best 
correlation; CD3E (both mRNA and protein) are so 
poor, they are discarded.  

Figure 62: Cell Type Profiling module - QC barplot 

Figure 63: Cell Type Profiling module - QC cell type 
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Summary Plots 
 
The summary plots can be viewed for raw or relative data. The summary plots can be viewed for raw or 
relative data. Each relative abundance score gives a contrast between cell types’ measurements. The Total 
TILs score is defined as the average of the B cell, T cell, CD45, Macrophage and Cytotoxic cell scores. Other 
relative abundance scores are calculated by subtracting the total TILs score from a single cell type score. 
For example, the NK cells vs. TILs score is the NK cell score minus the total TILs score. 
 
 
The heatmap of raw (or relative) cell type 
measurements is a descriptive plot showing the 
abundance of different cell types. Cell types are 
listed on the horizontal axis and samples are listed 
vertically. Orange indicates high abundance whereas 
blue indicates low abundance. This method does not 
support comparisons of different cell types. Rather, 
it supports comparisons of abundance of the same 
cell type between samples. 
 

In the RNA-Protein dataset used in this 
example, we can see that the first six 
samples (the unstimulated group) display a 
high abundance of several cell type groups 
where samples 7-12 (the stimulated group) 
have a low abundance. T-Cells and CD8 T-
Cells show the opposite: these groups had 
low results in the unstimulated samples and 
higher in the stimulated group. 

 
 
The heatmap of correlation matrix of raw (or relative) 
cell type measurements shows the correlation 
between different cell types. Cell types are listed on 
both the horizontal and vertical axes. Gold shows 
highly correlated cell types and blue shows highly anti-
correlated cell types.  

 
In the RNA-Protein dataset used in this 
example, we can see that while most of the 
cell types are highly correlated, T-Cell groups 
are anti-correlated with them. 

 
 
 
 

Figure 64: Cell Type Profiling module - cell type heatmap 

Figure 65: Cell Type Profiling module - cell type correlation 
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Raw (or relative) cell type measurements vs. other cell type measurements, by covariate 

By clicking on a tab for a specific cell type, we can more closely examine its behavior relative to other cell 
types or cell type ratios.  

 
 
In the RNA-Protein dataset used in this example, we have chosen T-Cells from the tab from the left side of 
the window. These cells’ scores are plotted against each other cell score, colored by treatment. We can 
see separation between stimulated and unstimulated samples in all plots.  

 
 

 

 
  

Figure 66: Cell Type Profiling module - cell type measurements, compared 



MAN-10030-03                                                                                  nCounter Advanced Analysis 2.0 User Manual  
 

 

 83 

Covariates Plots 

The raw (or relative) cell type measurements vs. covariate plots the cell type abundance measurements 
against each selected covariate. 
 
 
In the RNA-Protein 
dataset used in this 
example, we can visualize 
the change in expression 
between one 
experimental group and 
the other for each cell 
type. As we saw in the QC 
barplot, Neutrophils had 
the biggest change 
between the 
unstimulated and the 
stimulated states. 
 
 
 

 

With raw (or relative) cell type measurements vs. 
covariate, we can examine the relationship between cell 
populations and selected covariates. Each cell type’s 
score has been centered to have mean 0. As abundance 
estimates (cell type scores) are calculated in log2 scale, an 
increase of 1 on the vertical axis corresponds to a 
doubling in abundance.  
 
 

In the RNA-Protein dataset used in this example, 
we can see the difference between the 
unstimulated samples’ T-cell scores and those of 
the stimulated samples. 

 
 
 
 

  

Figure 67: Cell Type Profiling module - cell type measurement by covariate 

Figure 68: Cell Type Profiling module - cell type 
vs covariate 
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Cell Type Profiling Algorithm Details 
 

A cell type’s abundance can be measured as the average log-scale expression of its characteristic 
genes. The algorithm used to identify appropriate marker genes and exclude badly-behaving cell 
type-specific genes from estimates of cell type abundance is detailed below, as is the permutation 
test used to derive a p-value assessing a cell type’s marker genes. Automatic Screening of Failed  

Cell Type-specific Genes 
First, we define a similarity metric between two candidate cell type-specific genes. Under the assumption 
that both genes are specific to the same cell type and consistently expressed within it, they will be highly 
correlated with a slope of 1. To measure two gene’s adherence to this pattern, we employ a slightly 
modified version of Pearson’s correlation metric: 
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) = ⁡
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

(𝑛−1)

2
(𝑣𝑎𝑟(𝑥)+𝑣𝑎𝑟(𝑦))

, 

where x and y are the vectors of log-transformed, normalized expression values of the two genes, 𝑥̅ and 𝑦̅ 
are their sample means, and var(x) and var(y) are their sample variances. The similarity() function equals 1 
when the two genes are perfectly correlated with slope of 1 and decreases for gene pairs with low 
correlation or slope diverging from 1. Since many biologically related genes will exhibit correlation 
unrelated to a shared cell type, it is important to apply a more stringent measure of similarity than mere 
correlation. 
 
Our gene selection algorithm is as follows. Assume there are p genes and n samples. 

 Use the similarity function to compute a p*p similarity matrix amongst the genes. Each gene has 

similarity of 1 with itself. 

 Label all gene pairs with similarity below 0.2 as “discordant.” 

 Iteratively remove genes: while there are more than 2 genes remaining and while at least one 

discordant pair of genes remains: 

a. Count the number of discordant pairs each gene participates in. Call the maximum of these 

counts n_discord. 

b. Identify the genes with n_discord instances of discordance with another gene. Of these 

genes, remove the single gene with the lowest average similarity to the other remaining 

genes. 

 
The above process is similar to the geNorm algorithm. This similarity is not a coincidence, as cell type 
markers genes can be thought of cell type-specific “housekeeper” genes.  
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Calculation of p-values for Cell Type Gene Sets 
We test the null hypothesis that the given gene set exhibits no greater cell type-specific-like behavior than 
a randomly selected gene set of similar size.  
First, we require a metric of a gene set’s adherence to the assumption of cell type-specific and consistent 
expression.  

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒(𝑋) =
1

𝑡𝑟𝑎𝑐𝑒(𝐶𝑜𝑣(𝑋))⁡
(𝑝−

1

2, … , 𝑝−
1

2)𝐶𝑜𝑣(𝑋) (𝑝−
1

2, … , 𝑝−
1

2)
𝑇

, 

where X is the matrix of log-transformed, normalized expression values of the gene set, and where p is the 
number of genes. The concordance() function evaluates at 1 if all genes are perfectly correlated with a 
slope of 1, and degrades to 0 as this pattern weakens. 
We perform our permutation test as follows. Assume the given gene set has p genes, of which p0 survived 
the iterative gene selection procedure. Call the data from the gene set X, and the data from the reduced 
gene set X0. 

 Compute concordance(X0). 

 Choose 1000 random genes sets of size p. Denote the data from a random gene set X’. 

 For each gene set, apply the criteria of the gene selection algorithm to reduce X’ to only its best p0 

genes. Call the data from this reduced random gene set X0’, and compute concordance(X0’). 

 Return a p-value equal to the proportion of concordance(X0’) values greater than concordance(X0). 

 
Also note that there are 3 single-gene cell type scores. These scores cannot be tested with this method; 
however, the genes in question (CD45 for CD45 cells, Tbx21 (T-bet) for Th1 cells, and FOXP3 for Tregs) are 
well-characterized. 
 

Cell Type Contrast Matrix File 
To generate TIL cell scores using a custom matrix file, the Advanced Analysis Cell Type Profiling module  
does the following: 
 

1. It calculates raw cell scores as mean log2 normalized counts of cell type specific markers. Genes 
included to generate the scores must be those that correlate and behave as cell markers 
(Danaher, 2017). 

2. It correlates all cell type scores vs CD45 scores using the PEARSON equation. The cell scores with 
correlation coefficients >0.6 will be used to average and get TIL scores. 

3. It normalizes raw cell scores to TIL scores.  
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Here is an example of steps 2 and 3 using 5 cell populations to generate TIL scores: B cells, CD45+ lymphocytes, 
Cytotoxic T cells, Macrophages and T cells: 
 
Column B in the contrast matrix will be used by nSolver to generate a TIL cell score as the average of (in this example) 
5 cell populations highlighted in red (B cells, CD45+ lymphocytes, Cytotoxic T cells, Macrophages and T cells).  
 

TILscore =
Bcell⁡score+CD45cell⁡score

+ +Cytotoxiccell⁡score+Macrophagecell⁡score+Tcell⁡score

5
   (Eq 1) 

 
This equation is equivalent to: 
 
TILscore = 0.2xBcell⁡score + 0.2xCD45cell⁡score

+ + 0.2xCytotoxiccell⁡score + 0.2xMacrophagecell⁡score +
0.2xTcell⁡score (Eq 2) 
 
The coefficients of the scores in the second equation are annotated in the table (see the Custom Options for Cell Type 
Profiling section, Figure 61), column B (in red). 
 
Column C is used by Advanced Analysis to generate a contrast ratio of B cells, relative to TIL. In linear space : 
 

Bcells⁡relative⁡to⁡TIL =
Bcell⁡score

TILscore
 (Eq 3) 

 
 This equation is equivalent to: 
 

1xBcell⁡score⁡

0.2xBcell⁡score + 0.2xCD45cell⁡score
+ + 0.2xCytotoxiccell⁡score + 0.2xMacrophagecell⁡score + 0.2xTcell⁡score

 

 
To annotate this equation on the contrast matrix, we use positive coefficients for scores in the numerator, and 
negative coefficients for scores in the denominator. Since B cell scores appear in both the numerator and 
denominator, the coefficient will be the sum of the coefficients. For this example: 1 − 0.2 = 0.8. 
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Related Analytes Module  

This module enables comparison of expression levels within pairs of probes that have been linked in the 

probe annotation file. Pairs such as mRNA-Protein or Total Protein-Phosphorylated Protein may already be 

linked in some files. This module applies all the tools of the Probe Descriptive Module to each pair of related 

analytes. It is especially useful for describing the co-regulation of Protein and mRNA counterparts or of 

Phosphorylated isoforms. 

 

Before You Start Related Analytes 

The CodeSet’s probe annotation file will designate which mRNA markers are related to which proteins. To 

specify or modify these relationships, use the Related.Probes column in the probe annotation file. For any 

probe of interest, enter the probe ID of its related counterpart in the Related.Probes column, and vice 

versa. In this way, you can link any two probes to look at pairs of mRNA probes for splice variants or pairs 

of Protein probes (phosphorylated:non-phosphorylated). See the Creating Probe Annotations for Custom 

CodeSet Data section. 

Figure 69: Related Analytes view and options 
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Custom Options for Related Analytes 

The Related Analytes menu allows you to Select Probe Pairs for 

analysis. The options provided are mRNA and Protein probe pairs 

that have been defined as related in the Related.Analyte column 

of Probe Annotations file. Select the pairs of interest from the field 

on the left and move them to the field on the right with the green 

arrow button. At least one must be selected 

The output graphs will be colored by the categories selected in the 

Grouping Annotations field (for continuous variables, Low, 

Medium, and High subsets will be computed). Move the 

annotation(s) desired from the left field to the right using the 

green arrow button.  

 You can check the box to Generate Trend Plots if you have covariates to designate as Interval ID and as 

Series ID. The interval ID can be an ordered categorical or continuous variable. Additionally, trends across 

distinct sample annotation groups can be examined by specifying an optional stratifying annotation.  

o Interval ID is the variable that defines how the data points are ordered along the trend (horizontal 
axis in plots). Typical covariates that would be specified as Interval IDs are Time (as in the example 
below – Figure 70), Concentration, and Dosage; there should be three or more groups in this 
variable. 

o Series ID defines the groups into which we wish to separate the samples (for example, patient 
cohorts). In general, the definition of group could extend to the case where each group consists of 
only one observed entity (for example, one patient). The example below uses BRAF Genotype. 

o Stratifying Annotation allows you to separate the series ID into groups to see a trend. Since we are 
interested in how Treatment affects each BRAF genotype (chosen as Series ID, below), we will 
select it as our stratifying annotation. 

 

  

Figure 70: Related Analytes custom analysis menu 

  
 
 

  

The question mark button 
reveals additional 
information. 

 

The exclamation mark 
button reveals an alert and 
brief explanation as to why 
an option may be 
unavailable (greyed out). 
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Interpreting Results of Related Analytes Plots 
 

Correlation Plots 

The correlation plot allows visualization of two sets of information: distribution of gene expression and 

correlation of gene expression. When the covariate of interest is continuous, the values are categorized into 

low, average and high. Each field belongs to the gene listed at the top of its column and the gene listed on 

the right side of its row. 

o The distribution of expression for each gene is drawn on the diagonal, segregating experimental 

groups belonging to the chosen covariate by color.  

o The correlation of gene expression for each pair of genes is expressed numerically in the top right 

field as the overall Pearson correlation coefficient and the p-value. Correlation of gene expression 

segregating covariate groups is also given; groups are separated by color. 

o The correlation of gene expression for each pair of genes is expressed graphically in the lower left 

field, plotting the expression values and separating the groups by color. 

  

Figure 71: Related Analytes module – Correlations Plot 
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Trend Plots 

This plot is designed to enable tracing of the change in expression levels of the related probes of a sub-

category of the variable of interest. Examples of this sub-category could be individual patients, a cell line, 

or a patient cohort and the variable of interest is (typically) time, concentration, dosage, or order of 

observation. Choose the probe-pair of interest from the tabs on the left. 

In the example in Figure 72, we see Trend plots, stratified by Treatment type. For the settings used to create 

this plot, see the Custom Options for Related Analytes section. Time is the Interval ID, which establishes the 

x-axis. Each probe’s expression is plotted in a single color over time in three lines. The narrow lines 

represent each category of the variable set as the Series ID (in this case, BRAF genotype); the thick line 

represents the average of these values. We can see that all probes responded similarly over time in the 

DMSO (control) group.  

52 

  

Figure 72: Related Analytes module - Trend Plot 
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SNV Module 

 
The SNV Module summarizes SNV variant events detected in the data through three different types of plots.  

 
From the Overview tab, you can choose between the Sample Probe Matrix or the Quality Map.  The Sample 
Probe Matrix indicates sites which have tested positive for a variant.  The Quality map displays the raw 
counts of the control probes for each sample in the dataset. 

 
The By Samples tab allows you to view sample-specific boxplots of the log2 ratio of counts for each variant 
probe compared to reference data. 
 

 

Figure 73: SNV module view and options 
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Before You Start SNV 

SNV analysis requires a set of SNV references to establish a baseline for variant calls. This reference set can 
be run on a different RLF but should use the same type of unique identifier as the sample set (i.e., if the 
Description column is used to document shorter sample names for the sample set, you must enter unique 
same names in the SNV reference set’s Description column, as well). 

Potential Cross-Hybridization Interactions 
Due to the complex, competitive hybridizations that form the foundation of SNV chemistry, there are 
certain assays that, in order to ensure sensitivity down to 5% allele frequency, may also have affinity for 
other variant sequences in the assay. These interactions can result in false-positive calls among related 
probes assaying the same hotspot regions in the genome. Known potential variant cross-hybs are listed in 
the tables below. Exercise caution when analyzing data that shows positive results in these pairs of assays. 
The strongest call will likely be the assay listed in the “…When True Positive Present” column, and a weaker, 
secondary call may appear for the assay listed in the column “Putative False Positive…” 

 
For example, in the Heme panel, when CSF1R COSM947 (Y969C) is present, you have a low chance that 
CSF1R COSM948 (Y969F) calls will be falsely elevated. 

Table 3: Heme Panel Potential Hybridization Pairs 

Putative False Positive… …When True Positive Present Probability 

CSF1R COSM948 (Y969F) CSF1R COSM947 (Y969C) Low 

DNMT3A COSM52944 (R882H) DNMT3A COSM99740 (R882P) Low 

FLT3 COSM27650 (D835A) FLT3 COSM784 (D835V) Low 

IDH1 COSM28748 (R132S) IDH1 COSM28749 (R132G) Medium 

IDH2 COSM41875 (R140L) IDH2 COSM41590 (R140Q) Medium 

KIT COSM1310 (D816Y) KIT COSM1311 (D816H) High 

KIT COSM1311 (D816H) KIT COSM1310 (D816Y) Medium 

KRAS COSM512 (G12F) KRAS COSM516 (G12C) Medium 

KRAS COSM512 (G12F) KRAS COSM520 (G12V) Medium 

Table 4: Solid Tumor Panel Potential Hybridization Pairs 

Putative False Positive… …When True Positive Present Probability 

BRAF COSM473 (V600K) BRAF COSM476 (V600E) Low 

BRAF COSM475 (V600E) BRAF COSM476 (V600E) Low 

EGFR COSM12370 (L747_P753>S) EGFR COSM12369 (L747_T751delLREAT) High 

EGFR COSM12370 (L747_P753>S) EGFR COSM6255 (L747_S752delLREATS) High 

EGFR COSM12384 (E746_S752>V) EGFR COSM12416 (E746_T751>VA) High 

EGFR COSM6223 (E746_A750delELREA) EGFR COSM6225 (E746_A750delELREA) High 

EGFR COSM6255 (L747_S752delLREATS) EGFR COSM12382 (L747_A750>P) High 

KRAS COSM549 (Q61K) KRAS COSM550 (Q61E) Low 

KRAS COSM555 (Q61H) KRAS COSM554 (Q61H) Low 

NRAS COSM585 (Q61H) NRAS COSM586 (Q61H) Low 
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Custom Options for SNV 
 
There is no SNV custom options menu, however, the General Options menu will include a Specify SNV 
Parameters button if it detects SNV data in the set. This button allows you to designate the reference 
samples, adjust the minimum fold change, and adjust the p-value to modulate SNV calling stringency. 
 
You may select Quick Analysis and choose one covariate from the dropdown for analysis.  
 
Alternatively, you may select Custom Analysis if you would like to run a multi-RLF analysis, choose multiple 
covariates, or customize your analysis in another way. The General Options tab will appear (see Figure 74).  
 
Select the SNV Analysis Parameters button to reassign SNV References by covariate type (the default is Is 
Reference, referring to the assignment made during nSolver experiment creation) or by file name (manual 
selection). You may adjust the parameters defining the reference thresholds (Detected and Not Detected), 
based on number of log2 fold changes (log2FC) and p-value, however, ensure these values are not identical. 
The algorithm is not designed for a dichotomous output and will reset to default values if it does not detect 
a lower log2FC threshold for the Not detected setting. 
 
By default, the EM (expectation maximization) and Debias boxes are checked. In most circumstances, you 
won’t need to deviate from this default. If, however, you are troubleshooting unexpected results, check 
one of these boxes off at a time and view this effect on your data. EM facilitates the borrowing of 
information from sample- to-sample; this is a useful model, but if one of the samples is of poor quality, you 
may need to check this option off to keep this sample from impacting the others. Debiasing is a by-sample 
bias removal procedure. 

 
 

  

Figure 74: Windows associated with SNV custom analysis options - General Options menu 
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Interpreting Results of SNV Plots 

Overview Sample Probe matrix 
 
This plot shows the samples and probes where SNVs were called. The legend below the plot details 
the rules for calling SNVs from raw counts, p-values and fold-changes above expected background. 

 

 
 
In the 3D Bio Data Example 
(see Appendix A), the SNV 
call summary gives a clear 
depiction of the SNV calls 
made in this data.  Results 
are as expected: SKMEL28 
samples all exhibited variant 
calls in the BRAF gene, while 
SKMEL2 samples all exhibited 
variant calls in the NRAS 
gene.  

 
  

Figure 75: SNV module - Overview plot 

Figure 76: SNV module - Overview plot from 3D Bio Data Example 
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Overview Quality Map 
 
This heatmap shows the log10 raw SNV control probes values for each (reference and test) sample in the 
dataset. Using this plot, you can not only detect poor quality samples, but can use the vertical color bar on 
the left to determine the cause and effect of a possible sample failure. High expression is displayed in red, 
average in orange, and low in blue. 

 
o The SNV_INPUT_CTL class (pink bar in Figure 77) contains probes for amplified, endogenous genes. 

These demonstrate input gDNA sample quality and amplification success. Relatively low counts 
here may indicate, for example, an FFPE sample of compromised quality or a suboptimal PCR 
amplification. 

o Probes belonging to SNV_UDG_CTL (green bar) are the UDG control probes. Low expression in this 
class indicates that UDG digestion was successful and your sample is not suspected to be 
susceptible to cross-contamination. 

o Probes belonging to SNV_PCR_CTL (orange bar) capture the quality of PCR for each sample. Any 
sample in this class with significantly low counts may have experienced suboptimal PCR 
amplification.  

o SNV_NEG (teal bar) and SNV_POS (coral bar) are exogenous assays using two-armed probes. 
SNV_POS probes have template present and should exhibit high expression; SNV_NEG probes lack 
a template and should exhibit low expression. Strong signal from the SNV_POS will signify a 
successful hybridization. A subset of these probes is used to test lane temperature and represent 
background signal. 

  

Figure 77: SNV module 
- Quality map 
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By Samples Variant plot 
 
This plot displays a single sample's detection results for each probe. Vertical bars show the estimates and 
confidence intervals for each probe's log2 fold-change relative to its expected value in reference samples.  
 

o Probes for which an SNV variant was called are highlighted in gold. The dashed gold line marks the 
fold-change threshold required for a SNV call. 

o Vertical bars in grey, overlapping the black line at 0, indicate probes that are not statistically 
significantly above their expected reference level.  

o Very low-frequency SNVs may manifest as vertical bars above 0 but with estimates below the fold-
change threshold. These are highlighted in blue.  

 
The legend below the plot details the rule for calling SNVs from raw counts, p-values and fold-changes 
above expected reference value.  

  

Figure 78: SNV module - By Samples Variant Plot and diagram 
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SNV Algorithm Details 
 
The primary task of the SNV evaluation algorithm is to make presence/absence calls for mutations 
detectable in the panel as well as to provide statistics that quantify our confidence in the calls. To this end 
the algorithm first seeks to characterize the expected distribution of counts for each probe in the panel 
when no mutation is present. This is learned from reference sample data.  Once this distribution is 
characterized for each probe, the algorithm can perform hypothesis tests evaluating whether a count 
corresponding to a mutation in a test sample is improbably high when assuming wild type status for the 
sample. The algorithm consists of three stages. Preprocessing, initial estimation, and post estimation 
refinement.  

Preprocessing 
 
This stage involves data normalization and calculation of data attributes required for estimation and post 
estimation stage. These attributes include: 

o The temperature adjustment factor (𝑡̂) is a metric empirically shown to be able to serve as a 

surrogate for temperature. Its value is: 

𝑡̂ = log2 (
𝑃𝑂𝑆𝐴+𝑃𝑂𝑆𝐷

𝑃𝑂𝑆𝐵+𝑃𝑂𝑆𝐸
)⁡⁡(Eq.1) 

o The normalization factor used to adjust for input/reaction efficiency normalization is the centered 

mean log2 SNV_INPUT_CTL probe counts for each lane.  

o The estimated background for probes with sufficiently high background is a function of 𝑡̂ and the 

wild type count corresponding to the same locus. The following steps are repeated for each probe. 

Ensure that: 

1. Median raw count WT reference samples > min count threshold (default is 50). If not, 

set background estimate to 0. 

2. Test sample counts are within +/-1.3 z units of the distribution of counts for that 

probe’s WT reference sample. If not, set the background estimate to 0. Mean and 

standard deviation for z transformation is computed based on the counts from the 

reference samples. 

3. The adjusted R2 is > 

𝐵𝑔̂𝑖𝑗 =⁡𝛽0 +⁡𝛽𝑡 𝑡̂ + 𝛽𝑤 ⁡𝑊̇𝑙𝑜𝑐.𝑗 + ⁡𝜀⁡ (Eq.2) 

Where 𝑊̇𝑙𝑜𝑐.𝑗 is the normalized log2 wild type count at loci j centered by sample set id 

with sample sets consisting of either reference or test samples. The default adjusted 

R2 threshold = 0.6. 

Initial Estimation 
 
For each mutant probe pj, probe j, and sample i, we fit the following model: 

log2(𝑛𝐶𝑜𝑢𝑛𝑡𝑖𝑗) −⁡𝐵𝑔̂𝑖𝑗 =⁡𝛽𝑗 +⁡𝛽𝑡𝑗 𝑡̂𝑖 + 𝛽𝑖𝑗 ⁡𝑆𝑖𝑗 + ⁡𝜀⁡ (Eq.3) 

o 𝑛𝐶𝑜𝑢𝑛𝑡𝑖𝑗 is the normalized count for sample i, probe j.  
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o 𝑆𝑖𝑗 is a categorical variable which takes on the value “reference” when the ith sample is a reference 

sample. For a dataset with n test samples and m reference samples, S has n+1 levels and the model 

has residual degrees of freedom = n + m – (n+2) = m-2. 

o 𝛽𝑖𝑗 is the log2 fold change normalized count in sample i for probe j relative to the average log2 count 

for the same probe in the reference sample. These log2 fold change values and their corresponding 

user-specified standard error (e.g. 0.95 or 0.99) are computed and stored. Subsequently, using 

these estimates as well as the raw counts values calls are made for each mutant probe j. A mutation 

is called 3when: 

1. p value < p.threshold (default 0.05) 

2. log2 Fold change > log2 fold change threshold (default is 1 i.e. 2 folds or more up) 

3. Raw count > (min count threshold) * 2(log2 fold change threshold) 

Post Estimation Refinement 
 
In a typical dataset, the many tested samples for which no SNV calls were made with high confidence 
represent data points with wild type status. These can be used to increase our power to characterize the 
wild type distribution of counts.  

o When test sample i and probe j are consistent with wild type status, we replace the sample id in 

variable  𝑆𝑖𝑗 with the value reference.  Completing this exercise for all samples i and probe j, we 

then re-run the model in Eq.3. This time, the model benefits from 2k increase in residual degrees 

of freedom (if k non-reference samples are re-designated as reference). Following the inference, 

calls can be made and the iteration can be repeated until changes to the results are minimal (by 

default the algorithm allows for maximum of 20 cycles).  

o The iterative process involves the following steps: 

1. Refit the model in Eq.3 (unless there were no mutant call, in which case term the Sij 

term is dropped). 

2. Ensure there is no major outlier in the fitted model (this is done based on evaluation 

of Cooks distance as well as z score of the fitted values). If so, exclude and refit. 

3. Store the adjusted R2 value of the model. 

4. Fit the model for reference status and compute the corresponding SE. 

5. For any non-reference sample, compute t value by subtracting the expected value of 

reference and dividing the estimate by prediction standard deviation. Using the same 

statistic, update the corresponding p value and confidence intervals. 

6. Make the calls as before. 

                                                           
3 In the current version, the user interfaces allow for specification of two calling categories by the user 
corresponding to two level of stringencies. The outlined steps for calling corresponds to a case where 
only the highest stringency is considered a call but the principles of how calls are made are the same in 
general given a set of user-specified cut offs. 
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7. Repeat until convergence. Convergence is defined to happen when the median shift in 

t-values < t.convergence (by default 0.1) or if no change in call status is made.  The 

model with the highest adjusted R2 is selected as the best solution. 

Debiasing 
 

The last refinement involves by-sample bias removal. Specifically, the mean log2 fold change for wild type 

calls in each sample is calculated and the value is subtracted from all fold changes estimated for that 

sample. Subsequent to this adjustment, the t and p values are also adjusted accordingly and the call 

procedure is repeated. 
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Fusion Module 

 
nCounter chemistry provides two different approaches to assist in the detection of gene fusions. Junction 
probes are specific to exon-exon pairs and target the sequence of the actual fusion junction (breakpoint).  
This provides a direct measurement of the fusion event; if a Junction probe has counts above background, 
then the targeted fusion is present. In contrast, groups of imbalanced, or End probes, are used to detect a 
fusion independent of its exact splice junction. A typical target gene has at least three End probes at each 
its 5’ and 3’ ends, well away from known fusion breakpoints. If the 3’ probes exhibit higher counts than the 
5’ probes (meaning that there are abundant 3’end transcripts or a display of imbalanced expression) it 
indicates that the 3’ end has been fused with some unknown 5’ partner. 
 
The Advanced Analysis Fusion module summarizes fusion events detected in the data through three 
different types of plots.  It does not require any user input to make fusion calls, however, you may specify 
a statistical significance level for detection by Junction probe and / or End probes (see the Custom Options 
for Fusion section). 

 
From the Fusion Overview tab, you can choose from the Detection Summary, a color-coded sample-gene 
matrix summarizing fusion calls, or the Heatmap, which visualizes raw counts for each probe.  The By 
Samples tab provides a more detailed look at the data behind fusion calls, allowing you to view histograms 
of the log2 counts from each probe of any sample in your dataset. The Fusion Summary Report provides 
specific details on the probe results used to make fusion calls for each gene. 

 

 

 

Figure 79: Fusion module view and options 
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Before You Start Fusion 
 
Use caution when working with very few samples (fewer than 6) and/or when replicate samples are 
selected for analysis. The outlier test’s power is sensitive to sample size and fusion frequency (see the 
Fusion Algorithm Details section). 
 
Simplified sample names can streamline the plot labels and lists. Use the Description column in nSolver to 
assign these shortened sample names, then select Description as your Identifier when initiating Advanced 
Analysis (see the Identifiers and Covariates section). 

 

 

Custom Options for Fusion 
 
There is no Fusion custom options menu, however, the General Options menu will include a Specify Fusion 
Parameters button if it detects Fusion probes in the dataset. This button allows you to adjust the p-value 
threshold for Junction probe detection and End probe imbalance expression. 
 
 
 
 
 
 
 
 

  

Figure 80: Windows associated with custom options for Fusion - General Options menu 
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Interpreting Results of Fusion Plots 

Fusion Detection Summary 
 
The Fusion Detection Summary is a sample-gene matrix, color-coded according to whether a gene tested 
positive or negative for evidence of a junction (relying on the Junction probe results) and/or positive or 
negative for evidence of an imbalance (using collaborated End probe data). This figure summarizes the 
fusion calls by plotting each gene tested on the vertical axis and each sample tested horizontally. Color 
(see plot key) indicates whether a fusion was detected and the type of evidence (Junction +/-, Imbalanced 
+/-, or both) used to make the call.  The Junction and End probes provide different levels of evidence for 
fusion events (see Table 5). The fusion call is clearest when both types of probes exhibit positive results. 

These concordant fusion calls provide the strongest evidence for a fusion event. However, even when End 
probes and Junction probes provide discordant fusion calls, clear conclusions can often be made. A 
positive result for the End probes accompanied by a negative result for the Junction probe may result 
from fusions not targeted by the experiment's Junction probes. A positive result from a Junction probe 
accompanied by a negative result from an End probe may result from fusions that are expressed at much 
lower levels than the wild-type transcript; these fusion calls hold weaker evidence, and examination of 
the raw data for these samples is recommended. 

Figure 81: Fusion module - Fusion Detection Summary 
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Fusion Summary Report 
 
This table summarizes the 
results from the call 
summary in table format 
and also gives specific 
details about the probe 
results used to make the 
conclusion(s) at each gene. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Categories for Fusion Calls 

Result Category Summary Example conclusion 

End probe 
detection call; 
Junction probe 
detection call 

Detected Gene Fusion, 
Variant Conclusive         

There is a high probability 
that the sample is positive for 
a specific gene fusion variant 

Positive ALK gene 
fusion event at 

EML4_13:ALK_20   

End probe 
detection call; no 

Junction probe 
detection call 

Detected Gene Fusion, 
Variant Inconclusive 

 

There is a high probability 
that the sample is positive for 
a fusion event but the variant 
is inconclusive. May indicate 
the variant is not currently 

included in the fusion-
specific probes (potentially a 

new variant) 

Positive ALK gene 
fusion event, 

location unknown 

End probe 
undetected call; 
Junction probe 
undetected call 

Non-Detected Gene 
Fusion 

 

There is a high probability 
that the sample is negative 

for a fusion event 

No gene fusion 
variants detected 

End probe 
undetected call; 
Junction probe 
detection call 

Inconclusively Detected 
Gene Fusion 

 

It is possible that the junction 
probe hit is a false positive, 

or that a fusion is truly 
present but has insufficient 
expression to be detected 
with the End probe test. 

Possible low-level 
expression of 

GOPC_4:ROS1_36 
atop high wild type 
ROS1 expression. 

Figure 82: Fusion module - Fusion Summary Report 
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Heatmap 

 
The Heatmap displays the log2 raw counts for the different fusion probes and allows you to view All probes, 
just the End probes, or just the Junction probes. Many fusions will be immediately obvious in these 
heatmaps, either through high counts of a Junction probe or through strongly imbalanced 5’/3’ probes for 
a gene within a sample. These heatmaps can also reveal technical artifacts that may mislead the detection 
algorithms. Look for Junction probes with unexpectedly high background counts, and look for samples with 
unusually high or low signal across a wide range of probes. Although every experiment and every probe is 
different, counts below 20 (3.3 in log2) are often background, and counts above 100 (6.6 in log2) are very 
seldom background. 

 

Figure 83: Fusion module - Heatmap 
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By Sample  
 
The By Samples tab allows you to view bar plots of the log2 raw counts from each probe of any sample in 
your dataset. The End probes plot is shown separately from the Junction probes plot. Review these plots 
for every detected fusion call.  
 
The End probes plot shows the log2 raw counts of the 5’ and 3’ probes. If an End probe detection call was 
made in the Fusion Detection Summary plot, confirm in this plot that the 3’ probes’ counts are visibly higher 
than the 5’ probes’ counts. Be aware, however, that in genes whose wild-type transcript has high 
expression, fusions may appear as slight but consistent increases in 3' probes relative to 5' probes. The null 
hypothesis here is that no fusion event occurred and therefore the mean 5' and 3' probes will be equal. A 
p-value for this is provided in the upper left of the plot. 
 
The Junction probes plot shows the log2 raw counts of the Junction probes. If a Junction probe detection 
call was made in the Fusion Detection Summary plot, this plot can provide a double check for the calling 
algorithm’s results. Check that the probe detected in the Fusion Detection Summary is truly expressed 
above background and above the other Junction probes in this plot. The numbers above the bars show the 
ranking of detection where 1 conveys the highest confidence in detection and subsequent lower rankings 
convey decreasing confidence. A ranking of 0 means undetected. In the absence of a fusion, all probes will 
fall in the background of the system (with a 0 rank). 
 
If a fusion is present in less than half the samples, the minimum sample size is > 6, and there is a Junction 
probe targeting it, that probe should have expression noticeably higher than the corresponding counts for 
samples lacking the fusion. In some infrequent cases, splice variants will affect a fused gene and two 
Junction probes will be elevated in the same sample.  

Figure 84: Fusion module - By Sample plots 
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Fusion Algorithm Details  
 

End probe detection algorithm 
 
Fusions result from a 5’ promoter region fusing to the 3’ region of a given gene. Highly-expressed fusions 
will therefore result in much higher expression of the driver gene’s 3’ end than its 5’ end. To quantify the 
evidence for 3’ overexpression, nSolver performs a t-test comparing the log-scale data from the 5’ and 3’ 
probes. Equal variance is assumed since, under the null hypothesis, there is no reason to suppose the 5’ 
and 3’ probes will behave any differently from each other. To prevent false detection at low counts, we set 
the mean of log2-transformed counts of 5’ probes to 3 (8 on the raw count scale) if the real mean is less 
than 3. We also set the sample standard deviation to be 1.714, a fixed value derived from a vast database 
of background counts. Since we assume the mean count of 3’ probes is higher than the mean count of 5’ 
probes, no test will be performed if the mean count of 3’ probes is lower than the mean count of 5’ probes. 
Also, to avoid false fusion calling when the mean count of 3’ probes is close to or within the background, 
no test will be performed if the mean count of 3’ probes is less than 32 (5 in log2 scale). 
 

Junction probe detection algorithm 
 
If a patient has no known fusion for a given gene included in the panel, then all the Junction probes for that 
gene will lack target and return only background counts. Thus, fusion detection is simply an exercise in 
identifying Junction probes whose counts are sufficiently higher than background. To test whether each 
Junction probe count is above background, we estimate the distribution of background counts, and use a 
sequential outlier test (robust Grubbs’ test) to call probes that fall above this background distribution. We 
apply the test separately for each Junction probe, looking for outliers among all the samples. 
The sequential outlier test works as follows:  

o We model the observed log2(counts) as coming from a normal distribution with mean equal to the 

sample median of the observed counts and standard deviation equal to either the sample standard 

deviation of the observed counts or an SD estimate predicted from a large NanoString database 

(details below).  

o Given this estimated normal distribution, we derive a p-value for the maximal data point by 

calculating the probability that the maximal data point drawn from this distribution would be 

greater than or equal to its observed value.  

o If the probability is less than our p-value threshold, we make a fusion call, remove the data point, 

and repeat the process until half samples are tested.  

o The order in which data points are called as outliers/fusions is recorded; the fusion call with smaller 

order is generally more reliable than the fusion call with larger order.  

 
The outlier test’s power varies with sample size and fusion frequency: the more samples and the lower the 
frequency of fusion events, the more accurately the algorithm can make fusion calls. We have run 
simulations showing that a sample size of 6 is generally required for adequate power. In experiments with 
less than 6 samples, we recommend looking particularly carefully at the raw data bar plots to confirm each 
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call. Fusion frequency will seldom compromise the algorithm since it is usually lower than 10%. In extreme 
situations where the fusion frequency is greater than 50%, the test power will reduce dramatically. 
 

 
 
 
  

A note on estimating standard deviation 
Because many experiments will lack sufficient data to estimate the standard deviation (SD) of 
noise, we use a large historical dataset to model SD. We find most probes adhere to the following 
relationship: 

 
SD (log2 counts) = 1.2172288 – 0.1250544*mean(log2 counts). 

 
To avoid excessively small SD estimates for probes with high means, we set the floor of SD to be 
0.5095818. Once the mean of log2(count) is greater than 3.5, we will choose the greater between 
the real sample SD and 0.5095818. This use of the sample SD in place of the constant 0.5095818 is 
appropriate because when log2(count) is greater than 3.5, the counts are less likely to come from 
background noise and more likely to come from either nonspecific binding or other factors, making 
the SD estimate from our historical data less reliable.  
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Appendix A: 3D Bio Data Example for Advanced Analysis 2.0 
 
The dataset, 3D Bio Data, is included when you download the nSolver 4.0 Analysis Software. This data 

contains three biological replicates from two different melanoma cell lines, SKMEL28, which has a known 

mutation (c.1799T>A; p.V600E) in both copies of the BRAF gene, and SKMEL2, which has two normal copies 

of the BRAF gene (and a known mutation in the NRAS gene). Both cell lines were treated with either DMSO 

(vehicle) or vemurafenib (a specific inhibitor of the V600E mutant BRAF protein) dissolved in DMSO for 8 

hours.  

Throughout the Advanced Analysis 2.0 User Manual, you will find excerpts of this dataset’s analysis.  

nSolver Data Prep 
 
To prepare your data for Advanced Analysis you must: 

1. Import files and set QC parameters in nSolver 4.0.  

o Select the Import RLF button and follow the prompts of the Import Wizard to import the 

RLF for dataset, then repeat the process to import the RLF for the SNV references. 

o Select the Import RCC button to import RCC files for dataset and the SNV references. 

Accept the default QC parameters.  

o You may wish to assign shortened labels that uniquely identify each of the RCC files 

(including the SNV references) using the Description column. This will simplify downstream 

visualizations. 

 

2.   Create an Experiment using the New Experiment button.  

Figure 85: Creating an experiment in nSolver 
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As you follow the prompts in the Experiment Wizard, you can leave background correction off, 

create annotations that will be informative to you in your analysis (see below), accept defaults for 

normalization, and leave ratio creation off.  

 

o Annotations: Create one annotation column 

titled Treatment, and assign DMSO or VEM 

according to what is documented in the sample 

names. Create a second annotation titled BRAF 

Genotype and assign WT/WT to the SKMEL2 

samples and Mut/Mut to the SKMEL28 samples.  

 

 

 

 

 

 

3. Once your experiment has been built, expand the navigation tree on the Experiments tab and 

highlight the Raw Data level.  Select the Advanced Analysis button.  

 
 
 

  

Figure 86: Creating annotations 
in nSolver 

Figure 87: Creating an Advanced Analysis in nSolver 
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Setting up the Advanced Analysis 
 

1. Choose a Name for your analysis and select nCounter Advanced Analysis 2.0 for Analysis Type.  If 

you have not yet installed version 2.0, refer to the Installation section. You can Browse to choose 

where the output files should be saved.  Select Next. 

 

2. Select a unique Identifier – this field will be used to label samples in the resulting plots. If preferred, 

use the modified labels you entered in the Description column when preparing your data in nSolver. 

Select your annotations in the Use for Analysis column – this will select them as covariates for 

analysis. Select Next. 

 
 
 
 

3. Select Custom Analysis. 

 

4. Select the General Options tab. For the purposes of this example, de-select any modules other than 

Overview, Normalization, and Differential Expression. We will focus on these to get a general 

overview of our data and the samples and genes that are differentially expressed in it. 

5. On the Normalization tab, you can customize the Normalization settings.  For this example, leave 

all defaults.  

Figure 88: Selecting identifiers and covariates in Advanced Analysis 

Figure 89: Advanced Analysis Custom Analysis menu - General Options 

Figure 90: Advanced Analysis Custom Analysis menu - Normalization 
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6. On the Differential Expression tab: 

o Move Treatment and BRAF Genotype from the Available Annotations field to the Selected 

Predictors field using the green arrow button.  

o Leave the Optimal setting and P-value Adjustment method as defaults.  

o Leave the Run GSA and Display Results Using PathView boxes selected. These plots will 

provide more detail and context to the Differential Expression results. We can change the 

number of top pathways to display from 20 to 10 to speed up processing.  

o Leave the Color Plots by and P-value Threshold settings as defaults. 

 

7. Select Finish. 

 

8. You will be returned to the nSolver dashboard. Expand the navigation tree of your experiment on 

the Experiments tab and highlight the Analysis Data level.  Highlight the analysis you just ran in the 

central table and select the Analysis Data button.  

Figure 91: Advanced Analysis Custom Analysis menu - Differential Expression 

Figure 92: Selecting analysis to view in nSolver 
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9. Your analysis will start to load in an HTML window. You may need to Allow blocked content. Allow 

up to one hour (potentially) if running Advanced Analysis 2.0 for the very first time, as the initial 

downloading of R libraries is time-consuming. You will need an internet connection and permissive 

firewall settings for this step. 

Advanced Analysis modules 
 

1. Overview:  

The heatmaps cluster data with similar expression patterns.  Colored bars along the top of each 

heatmap designate SNV and Fusion variant status, covariates, and QC flags. The colored bar along 

the left side provides information on probes that will be dropped from analysis due to low signal. 

In the raw data heat map (on the left) and the normalized data heat map (on the right) we can see 

roughly how the data is clustering and if that coincides with any of the variants or covariates (there 

are no QC flags in this dataset). We can see that one sample, 2_DMSO_R3, appears to be slightly 

different from the others; this sample does not deviate a great deal and so is no cause for concern, 

but serves as an example of the type of pattern you can look for to identify outliers in your data. 

We won’t draw any additional conclusions from these plots, since this module is intended be used 

as a QC tool and way to get a general impression of your data. 

 

 

 

 

 

 

 

 

 

 
 
 

Sample 2_DMSO_R3 appears as a slight outlier in each heatmap 

Figure 93: Advanced Analysis Overview module 
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In the Principal Component Analysis (PCA), a 
clear separation of BRAF.Genotype data points 
can be seen in PC 1 vs. PC 2 results, meaning 
that changes in this variable cause clear, 
consistent changes in the data.  Treatment does 
not have the same effect. 
 

This is reinforced by the p-value 
histograms under the Other QC tab, 
which shows a clear left- weighted plot 
for BRAF.Genotype samples, meaning 
there are a number of p-vaules in the 
significant range, close to zero. The 
Treatment p-values are more evenly 
distributed, indicating that relatively few 
genes appear to be differentially 
expressed between the treatment and 
control samples. 

 
The scatter plot on this tab displays the 
housekeeping genes in color. Their 
placement at the bottom of the plot 
indicates that they are stable and require 
little further attention. 

 

Covariates to 
choose from 

Figure 94: Advanced Analysis Overview 
module - PCA plots 

Figure 95: Advanced Analysis Overview module - QC plots 



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
114  

2. Normalization 

Looking at mRNA data, we can see the effect of the geNorm algorithm’s removal of each candidate 

reference gene on the variability of the normalized data; this information is then used to rank them. 

We can also see the Mean Square Error (MSE) of each sample plotted against its normalization 

factor in the Normalization Summay plot. Samples that are outliers are named on the plot; we can 

see that 2_DMSO_R3, again, appears as a bit of an outlier.   

 
 
 
 
 
 
Under the Protein tab, we 
can see similar plots 
referencing proteins that 
were unselected for 
Normalization and the 
MSE vs. normalization 
factor for each sample in 
the Normalization 
Summary. We can check 
protein controls on the 
Protein Expression 
Background plot.  

Figure 96: Advanced 
Analysis Normalization 
module - mRNA plots 

Figure 97:  Advanced Analysis Normalization module - Protein plots 
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3. Differential Expression 

The Volcano Plot for the 

covariate BRAF.Genotype 

depicts the differential 

expression of genes in mut/mut 

samples relative to the wt/wt 

samples. It shows multiple p-

value (significance level) 

thresholds. Only probes with p-

values in the significant range 

are colored and named. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Viewing this plot under the Treatment tab 
shows a colorless plot with no p-value 
thresholds, indicating Treatment did not result 
in signficant gene expression changes. 

 
 
 
 
 
 
 
 
  

Figure 98:  Advanced Analysis DE module - Volcano plot 

Figure 99:  Advanced Analysis DE module - Volcano plot 
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4. GSA 

Gene Set Analysis (GSA) shows us the variation in Global Significance Scores among the gene sets 

for each covariate. BRAF.Genotype is associated with more variable results among the gene sets 

than Treatment. We can see from the Directed Global Significance Scores plot that the P13K-Alt 

Pathway gene set has the highest score in the BRAF.Genotype category. 

 

    
 
Selecting the P13K-Alt Pathway gene 
set results in the Differential 
Expression volcano plot, overlaid 
with colored points which reflect the 
probes in that gene set.  We can see 
that there are a number of probes 
from this gene set with significant 
results.  

Figure 100:  Advanced Analysis GSA module - heatmaps 

Figure 101:  Advanced Analysis GSA module - Volcano plot 
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5. PathView 

As a next step to the GSA analysis, we can view the pathways that include our gene set(s) of 

interest in the PathView module. Here, we select the P13K-Alt Pathway again to see where our 

genes of interest lie in this particular pathway. Colored boxes show the specific elements of the 

pathway that were differentially expressed and whether they are up- or down-regulated in our 

data. If we decided to later run the Probe Descriptive module, we would enter these genes for 

analysis. 

  

Figure 102:  Advanced Analysis PathView module 
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6. SNV 

The SNV call summary gives a clear depiction of the SNV calls made in this data.  Results are as 

expected: SKMEL28 samples all exhibited variant calls in the BRAF gene, while SKMEL2 samples all 

exhibited variant calls in the NRAS gene.  

The By Samples tab allows you to view a plot of each individual sample and the data for each 

individual gene tested for that sample. 

 
 
 
 
 
 
 
 
 

  

Figure 103:  Advanced Analysis SNV module - call summary 

Figure 104:  Advanced Analysis SNV module - sample plot 



MAN-10030-03                                                                                  nCounter Advanced Analysis 2.0 User Manual  
 

 

 119 

Appendix B: References 
 

 
 
 
Vandesompele, J. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of 
multiple internal control genes. Genome Biol. 2002; 3(7). 

 
Wang H, Horbinski C, Wu H, Liu Y, Sheng S, Liu J, et al. NanoStringDiff: a novel statistical method for 
differential expression analysis based on NanoString nCounter data. Nucleic Acids Research. 2016; 
44(20):151. 
 
Tomfohr, J., Lu, J., & Kepler. T. B. Pathway level analysis of gene expression using singular value 
decomposition. BMC Bioinformatics. 2005; 6:225. 
 
Danaher P, Warren S, Dennis L, D’Amico L, White A, Disis ML, et al. Gene expression markers of Tumor 
Infiltrating Leukocytes. Journal for Immunotherapy of Cancer. 2017; 5(1):18. 
 

  



nCounter Advanced Analysis 2.0 User Manual   MAN-10030-03 
  
 

 
120  

Glossary 
 
This section defines terminology associated with the Advanced Analysis plug-in module. 
 
Analysis Type: users can choose between two different levels of analysis (see Quick Analysis and Custom 
Analysis). 
 

Analyte:  a sample that can be identified as RNA, DNA, Protein, or a mixture of one or more types based on 
the composition for the purposes of using them in an nCounter assay. 
 
Annotation: A type of notation that can be used to establish groups of samples or probes. 
 
Boolean (true/false) variable: a variable with exactly two categories; yes or no. 
 

Cartridge: the physical device that has 12 lanes which is put into the Digital Analyzer for counting. 

 
Categorical variable: a discrete variable with two or more categories. 
 

CodeSet: a collection of Capture and Reporter Probes designed against specific target sequences. 

Confounder: a variable which affects your data but which is not scientifically relevant. Technical 
confounders are variables such as run date or cartridge lot. Experimental confounders are variables such 
as patient body mass index or age. 
 
Covariates: variables which the Advanced Analysis tool can isolate and assess the effect of. At least one 
covariate must be selected for analysis.  
 
Continuous variable: a variable with infinite possible values. 
 

Custom Analysis: the user may select multiple covariates and customize settings in this analysis. In addition 

to the core modules, Overview, Normalization, Differential Expression, GSA, and PathView, the user has 

access to Related Analytes, Probe Descriptive, Cell Type Profiling, and Pathway Scoring.  

 

Custom CodeSet: a CodeSet with probe content customized to meet a specific customer’s needs. The 
probes and their respective target are designed in consultation with the NanoString Bioinformatics team 
and manufactured by the NanoString. 

 
Directed global significance score: this value measures the extent to which a given gene set is up- or down-
regulated relative to a given covariate. It is calculated similarly to the undirected global significance score, 
but it takes the sign of the t-statistics into account. 
 
Cell Type Profiling module: this module quantifies cell populations using marker genes which are expressed 
stably and specifically in given cell types. These marker genes act as reference genes specific to individual 
cell types, as they are expressed only in their nominal cell type, at the same level in each cell.  
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Differential Expression module: this module is used to identify the specific genes which exhibit significantly 
increased or decreased expression in response to the chosen covariate. It provides the basis for the Gene 
Set Analysis (GSA) and PathView modules and should be viewed prior to both.   
 
Gene set: a group of genes affiliated with a common cell type, disease, pathway, or function. 
 
Gene Set Analysis (GSA) module: this module summarizes the change in regulation within each defined gene 
set (selected along the left side of the window) relative to the baseline (or in the case of continuous variable, 
per unit change in variable). The values calculated are the global significance score and the directed global 
significance score and are expressed in heatmaps and/or a data table. 
 

General Options menu: the menu from which the user can begin to customize a Custom Analysis. Among 

other options, users may adjust parameters and choose modules to run. 

 
Global significance scores: (also called undirected global significance scores) a measure of the overall 
differential expression of the selected gene set relative to selected covariates, ignoring whether each gene 
is up- or down-regulated.  
 
Group: a category of samples, usually defined by an annotation. 
 
KEGG pathways: KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways describe high-level functions 
of cell-signaling pathways. 
 
Overview module: this module provides a general overview of the data through descriptive plots, organized 
into four categories: Heatmaps, PCA (principal component analysis), Study Design, and Other QC. 
 
Identifiers: unique names that differentiate every sample from the others.  The Sample File Name will 
always be unique, but can be long, so users may prefer to choose another type of identifier.  
 
Normalization module: this module seeks to eliminate run-to-run and sample-to-sample technical variability 
in the raw counts, which arises from inconsistencies in effective sample input and fluctuations in the overall 
efficiency in capturing and counting target molecules. It normalizes each analyte-type separately, resulting 
in clickable analyte-type tabs which reveal respective plots. 
 
Panel CodeSet: an off-the-shelf CodeSet with predesigned probe content manufactured by NanoString. 

 
PathView module: this module overlays the Differential Expression analysis results with various KEGG 
pathways. Elements that are over-expressed in this pathway are colored gold, those that are under-
expressed are colored blue, and those that are neutral are gray. 
 
Pathway Scoring module: this module combines the expression from all genes in a gene set into a single 
“pathway score”. Just as Differential Expression analysis of individual genes or gene sets is used to research 
the effect of covariates on a dataset, the Pathway Score can be used to summarize the data from a 
pathway’s genes into a single score. 
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Predictor: a variable which affects the data and which is scientifically relevant.  Examples include 
treatment type, treatment time, and cell line. 
 
Principal Component Analysis (PCA): a way of analyzing data with multiple variables. Variables that 
naturally correlate with each other will be grouped as a principal component. 
 
Probe annotation file: a .csv file containing annotations which document the biological significance of the 
probes and link them to the pathways with which they are associated. Users should check probe 
annotation files to ensure the fields they need are filled. 

Probe Descriptive module: this module provides multiple plots which are focused just on the probes of 
interest, which the user designates on the Custom Analysis menu.  
 
Quick Analysis: this type of analysis is performed with only a single covariate and default parameters set for 
the preselected core modules – Overview, Normalization, Differential Expression, GSA, and PathView.  
 
Related Analytes: this module enables comparison of mRNA and protein expression levels when the gene 
and protein have been linked in the probe annotations file. It applies all the tools of the Probe Descriptive 
Module to each pair of related analytes. This module is especially powerful for describing the co-regulation 
of mRNA and Protein. 
 
Sample annotations: these annotations are assigned to sample groups during experiment creation in 
nSolver and can be used to label both confounders and predictors. 
 
SNV module: this module summarizes SNV variant events and QC information detected in the data. 
 
Variable: a factor in or element of the experiment which is subject to change. 
 
Use for Analysis: this column is available for covariate selection in setting up an Advanced Analysis. 
 
Z-Score: a value that is used to indicate the distance of a certain number from the mean of a normally 
distributed dataset. 
 
 
 
 
 
 


