The Fine Balance of Immunology

The immune system often plays a role in the onset and progression of different disorders such as autoimmunity, fibrosis, and cancer. Understanding which cell types, cytokines, pathways, and transcription factors are involved in the balance between immune activation and suppression can lead to better treatments for chronic inflammation and disease. In addition to traditional bulk expression and proteomic analysis, spatial profiling of the location of immune cells in tissue can yield a better understanding of disease pathogenesis, uncovering differences within individuals as well as novel biomarkers for stratification and treatment.

Challenges

We know it’s a challenge as an immunologist to piece together what underlies healthy versus exhausted or abnormal immune system function. Projects often involve many different research techniques, cell types, and biomolecules and you may be working with a variety of sample types.  Even more of a challenge is understanding how different immune cells and biomolecules function and communicate in situ in the tissue in response to disease. 

How much could you advance your understanding of the immune system if you had access to a multiplexed technology platform for transcriptomic and proteomic analysis of multiple sample types such as Formalin-Fixed, Paraffin-Embedded (FFPE) tissue sections, fresh frozen tissue, cell lysates, PBMCs and whole blood? Make an impact on human health faster with streamlined bulk and spatial analysis of RNA, protein, and immune cell types using the combined power of the nCounter® Analysis System and the GeoMx® Digital Spatial Profiler.

Testimonials

See how scientists are leveraging NanoString tools to drive their Immunology research.

Publications

View All Publications

Single-cell and spatial multi-omics highlight effects of anti-integrin therapy across cellular compartments in ulcerative colitis

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC.

In situ single-cell profiling sheds light on IFI27 localisation during SARS-CoV-2 infection

The utilization of single-cell resolved spatial transcriptomics to delineate immune responses during SARS-CoV-2 infection was able to identify M1 macrophages to have elevated expression of IFI27 in areas of infection.
The SARS-CoV-2 pandemic has affected over 600 million people to date, resulting in over 6.

Whole transcriptome profiling of placental pathobiology in SARS‐CoV‐2 pregnancies identifies placental dysfunction signatures

Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) virus infection in pregnancy is associated with higher incidence of placental dysfunction, referred to by a few studies as a ‘preeclampsia‐like syndrome’. However, the mechanisms underpinning SARS‐CoV‐2‐induced placental malfunction are still unclear.

Related Resources

View All Related Resources
Product Bulletin Autoimmune Profiling Panel – Product Bulletin
Updating immune cell deconvolution for the spatial genomics era
Blog Post Q&A with Dr. Salla Keskitalo: Challenges and Opportunities in Studying Rare and Ultra-rare Autoimmune Diseases
Blog Post Solid Organ Transplantation and the Immunology of Rejection. Q&A with GeoMx® Digital Spatial Profiler Grant Winner Dr. Fadi Issa
Skysphere

Contact Us

Have questions or simply want to learn more?

Contact our helpful experts and we’ll be in touch soon.

Contact Us