Advancing Neuroscience Research

Neurodegeneration, neuroinflammation, infectious disease, and neurotrauma can have devastating effects on the Central Nervous System (CNS) that impact cognitive function, behavior, mental health, and more. Understanding the role of CNS cells such as neurons, astrocytes, glia, and oligodendrocytes as well as the pathways involved in disorders such as Alzheimer’s, Parkinson’s, Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS) is crucial to disease prevention, detection, and treatment. 

Challenges

We know it’s difficult to acquire diseased and normal CNS tissue for research. When samples are available, extracting the most biological information from every experiment with a multi-omic platform that is easy to use is important. Traditional, low-plex methods of profiling RNA and protein such as PCR, western blotting, immunohistochemistry, or immunofluorescence staining provide limited information on CNS structure and functionality.  RNA Sequencing, while more comprehensive for expression analysis, does not directly quantify transcripts, requires time-consuming, tedious steps and onerous data analysis and sacrifices the spatial arrangement of mRNAs within tissue.


NanoString offers two robust and widely-cited platforms for multiplexed proteomics and transcriptomics of challenging neuroscience sample types such as FFPE, cell lysates, and cerebrospinal fluid. The nCounter® Analysis System and GeoMx® Digital Spatial Profiler (DSP) can be used in tandem with minimal hands-on time for bulk and spatial profiling of RNA or protein to generate accurate, repeatable, and insightful results in less than 24 hours that get you to your next neuroscience publication faster.

Case
Studies

Biomarkers for Parkinson’s
Disease – Case Study

Read More
Biomarkers for Parkinson’s Disease - Case Study

Inflammation in Alzheimer’s
– Case Study

Read More
Inflammation in Alzheimer's Case Study

Microglia and Alzheimer’s
– Case Study

Read More
Inflammation in Alzheimer's - Case Study

Related Resources

View All Resources
Blog Post Advancing Neuroscience Gene Expression Research
Whitepaper Neuro Pub Review – Whitepaper
Product Bulletin nCounter Neuroinflammation Panel – Product Bulletin
Product Bulletin nCounter Neuropathology Panel – Product Bulletin
App Note/Tech Note Ultra-High-Plex Spatial Proteogenomics of FFPE Tissue Sections

Publications

View All Publications

Idelalisib inhibits experimental proliferative vitroretinopathy.

Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after rhegmatogenous retinal detachment surgery and open-globe traumatic injury. Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) δ.

Combined MEK and JAK/STAT3 pathway inhibition effectively decreases SHH medulloblastoma tumor progression.

Medulloblastoma (MB) is the most common primary malignant pediatric brain cancer. We recently identified novel roles for the MEK/MAPK pathway in regulating human Sonic Hedgehog (SHH) MB tumorigenesis.

Neurovascular injury with complement activation and inflammation in COVID-19.

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms.